降维CKF算法在大失准角传递对准中的应用
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

伦理声明:



Dimension reduced CKF algorithm for transfer alignment with large misalignment angle
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    惯性导航具备完全自主、高度隐蔽、数据频率高等优点,在机载精确制导武器中得到广泛应用。由于空中传递对准可能处于恶劣条件下,初始失准角较大,传统的线性传递对准模型不能反映系统的真实情况,线性滤波算法也将导致很大的对准误差,为实现精确对准,需要应用非线性模型和非线性滤波算法。而非线性滤波算法如无迹卡尔曼滤波(UKF)、容积卡尔曼滤波(CKF)等,在高维情况下,计算量很大,在弹载计算机计算资源受限的情况下,如何降低滤波算法的计算量是一个重要问题。本文将降维容积卡尔曼滤波算法应用在非线性传递对准模型中,将容积卡尔曼滤波的采样点由30个减少为6个,大幅减少了所需计算量。

    Abstract:

    Inertial navigation is completely autonomous, highly covert and has a high data frequency, which is widely used in airborne guided weapons. As the condition for transfer alignment may be bad during the flight, and the misalignment angle may be large, so that traditional linear model cannot accurately reflect the real situation of the system. To achieve a high alignment accuracy, nonlinear model and filter are utilized. Because nonlinear filter has a large calculation quantity and the computing power of on-board computer is limited, it is very important to reduce the calculated quantity of the filter. A dimension reduced Cubature Kalman Filter(CKF) algorithm is adopted in nonlinear transfer alignment model, and the sampling points are reduced from 30 to 6, significantly reducing the calculation quantity.

    参考文献
    相似文献
    引证文献
引用本文

宋嘉钰,杨黎明,李东杰.降维CKF算法在大失准角传递对准中的应用[J].太赫兹科学与电子信息学报,2017,15(5):740~744

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2016-04-19
  • 最后修改日期:2016-08-11
  • 录用日期:
  • 在线发布日期: 2017-11-03
  • 出版日期:
关闭