WSNs中基于无人机的强健节点定位算法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

河南省科技攻关资助项目(182102210599)

伦理声明:



UAV-based Robust Node Localization algorithm in WSNs
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    通过移动无人机(UAV)收集无线传感网络数据的方案已受到广泛关注,将感测的数据与产生此数据的传感节点位置关联起来是十分必要的。为此提出了基于无人机的强健节点定位算法(UAV-NL)。UAV-NL算法将UAV位置作为未知信息。传感节点接收由UAV在随机位置传输的beacon包,并记录接收信号强度指示(RSSI)矢量;通过理论推导2个RSSI矢量的范数距离与这2节点距离的线性关系;最后,通过RSSI值测距,并利用半定规划(SDP)算法估计节点位置。仿真结果表明,提出的UAV-NL算法即使在噪声信道条件下仍具有高的定位精确度。

    Abstract:

    The use of mobile Unmanned Aerial Vehicle(DAV) to collect data from Wireless Sensor Networks(WSNs) has attracted great attention recently. It is often necessary to relate the stream of sensed data to the deployed location of the data producing sensor nodes. Therefore, UAV-based Robust Node Localization(UAV-NL) algorithm is proposed. In UAV-NL algorithm, the location of UAV is unknown. Each sensor node receives beacon packets transmitted by the UAV at random positions and records an Received Signal Strength Indicator(RSSI) vector. The norm distance of two RSSI vectors, which is theoretically proved to be linearly related to the distance between two nodes, is used for ranging. Distance calculation method is theoretically derived by using RSSI measurements. Location of node is estimated by Semi-Definite Programming(SDP) algorithm. Extensive simulations in different environments validate high localization accuracy of the proposed algorithm even under noisy channel conditions.

    参考文献
    相似文献
    引证文献
引用本文

王自力. WSNs中基于无人机的强健节点定位算法[J].太赫兹科学与电子信息学报,2020,18(5):831~836

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2019-08-19
  • 最后修改日期:2019-11-19
  • 录用日期:
  • 在线发布日期: 2020-11-02
  • 出版日期:
关闭