基于功率谱密度的通信辐射源个体识别方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(62076160;51806135;61603239);上海市自然科学基金资助项目(21ZR1424700)

伦理声明:



Individual identification method of communication radiation source based on power spectral density
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为阻止设备克隆、重放攻击和用户身份假冒等问题的发生,准确识别和认证物联对象,提出一种基于功率谱密度指纹特征与智能分类器的通信辐射源个体识别方法。利用接收机采集I路射频基带信号;通过方差轨迹检测截取稳态信号片段,并对稳态信号片段进行数据标准化处理;计算数据标准化处理后的稳态信号片段的功率谱密度得到特征向量,将所述特征向量作为发射机的射频指纹;最后利用智能分类器识别所述射频指纹,完成通信辐射源个体识别。通过对同厂家、同型号、同批次的8个无线数传电台E90-DTU设备和100个WiFi网卡设备的实验测试表明,本文所提方法在视距(LOS)场景、视距场景与非视距(NOS)场景的混合场景、低信噪比场景、大数量物联设备场景都具有良好的识别准确率。

    Abstract:

    An individual identification method of communication radiation sources based on Power Spectral Density(PSD) fingerprint characteristics and intelligent classifier is proposed in order to prevent the occurrence of problems such as device cloning, replay attacks and user identity impersonation, and to accurately identify and authenticate Internet of Things(IoT) objects. First, the radio frequency baseband signal is collected by receiver, and the in-phase signal is collected. Then the steady-state signal segment is intercepted through variance trajectory detection, and data normalization processing on the steady-state signal segment is performed; the PSD of the steady-state signal segment is calculated after data normalization processing to obtain a feature vector, and the feature vector is used as the radio frequency fingerprint of the transmitter. Finally, an intelligent classifier is adopted to identify the radio frequency fingerprint to complete the individual identification of the communication radiation source. The experimental test to identify eight wireless data transmission radio E90-DTU devices and 100 WiFi network card devices of the same manufacturer, the same type and the same batch shows that the proposed method can obtain good recognition accuracy when applied in Line-Of-Sight(LOS) scenarios, mixed scenes of LOS and Non-line-Of-Sight(NOS) scenarios, low signal-to-noise ratio scenes, and scenarios with a large number of IoT devices, etc.

    参考文献
    相似文献
    引证文献
引用本文

李靖超,应雨龙.基于功率谱密度的通信辐射源个体识别方法[J].太赫兹科学与电子信息学报,2021,19(4):596~602

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2021-04-06
  • 最后修改日期:2021-05-19
  • 录用日期:
  • 在线发布日期: 2021-08-25
  • 出版日期: