典型电子器件中子和总剂量辐照协同损伤研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

抗辐射加固预先研究资助项目(41411030101)

伦理声明:



Neutron and γ-ray synergic radiation effect of typical electronic components
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    研究了几种典型电源类电子器件的中子和总剂量辐射效应,包括单总剂量效应、单中子辐射效应、总剂量和中子分时序贯辐照效应以及中子和总剂量同时辐照效应,分析了不同辐照条件下电子器件的失效中子注量(总剂量)阈值。试验结果显示,分时序贯、同时辐照试验给出的电子器件辐照失效阈值低,而单项辐射效应试验给出的失效阈值偏高。对于该类双极工艺器件存在协同增强损伤的机理进行了分析,其主要原因在于同时辐照时,电离损伤在晶体管氧化层产生氧化物正电荷,使基区表面势增加,与此同时界面态数量增多,减少Si体内次表面载流子浓度的差异,从而使电流增益的退化加剧,增强晶体管的中子位移损伤。按照同时辐照进行试验考核,更能真实评估器件的综合抗辐射性能,研究结果对于器件抗辐射性能评估具有重要意义。

    Abstract:

    The radiation effect of several typical power electronic components is analyzed, including single total ionizing dose effect, single neutron radiation effect, the sequence radiation effect of neutron-total dose and the synergic radiation effect of neutron-total dose, to get the failure threshold. Experiments show that electronic components irradiated by both neutron and γ-ray have a lower failure threshold than components radiated by single neutron or γ-ray. The mechanism of synergic enhancement damage in bipolar process devices is analyzed. The main reason is that the ionization damage produces positive oxide charge in the oxide layer of the transistor, which increases the surface potential of the base region, increases the number of interface states, reduces the difference of the carrier concentration on the inner sub-surface of the Si body, and intensifies the degradation of current gain and enhances the transistor neutron displacement damage. It is more practical to evaluate the comprehensive radiation resistance of the device according to the synergic radiation test. The research results are of great significance for the evaluation of the radiation resistance of the device.

    参考文献
    相似文献
    引证文献
引用本文

朱小锋,许献国,刘珉强.典型电子器件中子和总剂量辐照协同损伤研究[J].太赫兹科学与电子信息学报,2021,19(4):728~732

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2019-10-17
  • 最后修改日期:2020-04-14
  • 录用日期:
  • 在线发布日期: 2021-08-25
  • 出版日期: