基于多模态深度学习的信号调制识别
作者:
作者单位:

哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001

作者简介:

冯忠明(1998-),男,在读硕士研究生,主要研究方向为信号处理、深度学习等.email:fzm98@hrbeu.edu.cn.
李奎贤(1998-),男,在读硕士研究生,主要研究方向为人工智能、群体智能等.
王景岩(1997-),男,在读硕士研究生,主要研究方向为轻量化部署、深度学习等.

通讯作者:

李奎贤(1998-),男,在读硕士研究生,主要研究方向为人工智能、群体智能等. email:kuixianli@hrbeu.edu.cn

基金项目:

中央高校基本科研业务费资助项目(3072022CF0804);哈尔滨工程大学先进船舶通信与信息技术工业和信息化部重点实验室资助

伦理声明:



Signal modulation recognition based on multimodal depth learning
Author:
Ethical statement:

Affiliation:

College of Information and Communication Engineering,Harbin Engineering University,Harbin Heilongjiang 150001,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    信号调制识别技术在民用和军事领域都有重要应用。当前信息化战场中,由于各类雷达、通信、导航、电子战武器等信息辐射源的数量愈来愈多,调制形式也日益多样化,信号密度愈来愈大,战争电磁环境日趋复杂化,传统的信号调制识别技术已无法适应。因此,提出基于深度学习的AlexNet网络和复数神经网络,同时采用多模态特征融合和模型融合技术,融合信号统计图域和信号I/Q波形域的多模态信息,实现信号调制识别。仿真结果表明,所提方法的识别精确度在不同信噪比下均优于单模态识别方法和未采用多模态协同融合框架的方法。

    Abstract:

    Signal modulation identification technology has important applications in both civilian and military fields. In the current information battlefield, due to the increasing number of information radiation sources such as various radars, communications, navigation, and electronic warfare weapons, the modulation forms are becoming more and more diverse, and the signal density is increasing, which makes the electromagnetic environment of war increasingly complicated, therefore the traditional signal modulation identification technology has been unable to adapt. A robust feature extraction, fusion and recognition technology of complex communication modulation signals is put forward, and a deep learning-based AlexNet network and complex neural network are proposed. Multimodal information in the statistical graph domain and signal I/Q waveform domain is fused for signal modulation identification. The simulation results show that the recognition accuracy of the proposed method is higher than that of the single-modal recognition method and the method without the multi-modal collaborative fusion framework under different Signal-to-Noise Ratios(SNRs).

    参考文献
    相似文献
    引证文献
引用本文

冯忠明,王景岩,李奎贤.基于多模态深度学习的信号调制识别[J].太赫兹科学与电子信息学报,2022,20(12):1326~1334

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2022-02-13
  • 最后修改日期:2022-03-04
  • 录用日期:
  • 在线发布日期: 2023-01-13
  • 出版日期: