基于多级特征补偿的遥感图像时空融合方法
作者:
作者单位:

1.重庆邮电大学,计算机科学与技术学院,重庆 400065;2.重庆邮电大学,重庆市图像认知重点实验室,重庆 400065

作者简介:

刘文杰(1998-),男,在读硕士研究生,主要研究方向为遥感图像处理.email:s200201117@stu.cqupt.edu.cn.
李雨珈(2003-),女,学士,主要研究方向为遥感图像处理.
白梦浩(1996-),男,在读硕士研究生,主要研究方向为遥感图像处理.
张莉萍(1983-),女,博士,讲师,主要研究方向为遥感图像处理.
雷大江(1979-),男,博士,教授,主要研究方向为机器学习、遥感影像处理与解译.

通讯作者:

雷大江 email:leidj@cqupt.edu.cn

基金项目:

国家自然科学基金资助项目(61972060;62027827;U1713213;61902046);国家重点研发计划资助项目(2019YFE0110800);重庆市自然科学基金资助项目(cstc2020jcyj-zdxmX0025;cstc2019cxcyljrc-td0270);重庆市留学人员回国创业创新支持计划资助项目(cx2018120);重庆市高新技术研究计划资助项目(cstc2018jcyjAX0279)

伦理声明:



Spatiotemporal fusion of remote sensing images based on multi-level feature compensation
Author:
Ethical statement:

Affiliation:

1.School of Computer, Chongqing University of Posts and Telecommunications,Chongqing 400065,China;2.Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications,Chongqing 400065,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在许多地球科学应用中要用到大量的高时空分辨力的地球观测数据。时空图像融合方法为产生高时空分辨力的数据提供了一种可行且经济的解决方案。然而,现有的一些基于学习的方法对于图像深层特征提取能力较弱,对于高分辨力图像细节特征利用度不够。针对这些问题,提出一种基于多级特征补偿的遥感图像时空融合方法。该方法使用2个分支进行多层级的特征补偿,并提出了融合通道注意力机制的残差模块作为网络的基本组成单元,可以将高分辨力输入图像的深层特征更为详尽地提取利用。提出一种基于拉普拉斯算子的边缘损失,在节省预训练计算开销的同时取得了很好的融合效果。使用从山东和广东2个地区采集的Landsat和中分辨力成像光谱仪(MODIS)卫星图像对所提出的方法进行实验评估。实验结果表明,提出的方法在视觉外观和客观指标方面都具有更高质量。

    Abstract:

    A large amount of earth observation data with the high spatial and temporal resolution is employed in many earth science applications. The spatiotemporal image fusion method provides a feasible and economical solution for generating high spatiotemporal resolution data. However, some of the existing learning-based methods are poor in extracting deep image features and utilizing the detail features of high-resolution image. A spatiotemporal fusion method is proposed for remote sensing images based on multi-level feature compensation. It uses two branches to perform multi-level feature compensation and proposes a residual module fused with a channel attention mechanism as the basic unit of the network, which can extract and utilize the deep features of high-resolution input images in more detail. An edge loss is proposed based on the Laplacian operator, which saves the computational cost of pre-training and achieves a good fusion effect. The proposed method is experimentally evaluated by using Landsat and Moderate-resolution Imaging Spectroradiometer(MODIS) satellite images collected from two regions in Shandong and Guangdong. Experimental results show that the proposed method bears higher quality in both visual appearance and objective metrics.

    参考文献
    相似文献
    引证文献
引用本文

刘文杰,李雨珈,白梦浩,张莉萍,雷大江.基于多级特征补偿的遥感图像时空融合方法[J].太赫兹科学与电子信息学报,2023,21(7):939~951

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2022-09-30
  • 最后修改日期:2022-11-10
  • 录用日期:
  • 在线发布日期: 2023-07-27
  • 出版日期: