面向ADS-B信号辐射源个体识别的轻量化模型设计
作者:
作者单位:

1.海军航空大学 信息融合研究所,山东 烟台 264001;2.中国人民解放军31401部队,山东 烟台 264001;3.北京理工大学 前沿技术研究院,北京 100000;4.哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150000;5.南京邮电大学 信息与通信工程学院,江苏 南京 210000;6.天津市测绘院有限公司,天津 300000

作者简介:

王艺卉(1992-),女,在读硕士研究生,主要研究方向为辐射源个体识别.email:249927911@qq.com.
闫文君(1986-),男,博士,副教授,主要研究方向为空时分组码检测、智能信号处理.
徐从安(1987-),男,博士,副教授,主要研究方向为遥感图像智能处理、多目标跟踪.
查浩然(1996-),男,在读博士研究生,主要研究方向为深度学习、信号分析识别、软件无线电技术.
桂 冠(1982-),男,博士,教授,博士生导师,主要研究方向为智能信号处理、无限功率传输和物理层安全技术.
陈雪梅(1978-),女,博士,副教授,主要研究方向为智能车辆决策、驾驶行为分析.
葛 亮(1983-),男,博士,高级工程师,主要研究方向为测绘与遥感.

通讯作者:

闫文君 email:249927911@qq.com

基金项目:

国家自然科学基金资助项目(62271499);电磁空间安全全国重点实验室开放基金资助项目

伦理声明:



Design of lightweight model for Specific Emitter Identification of ADS-B signal
Author:
Ethical statement:

Affiliation:

1.Institute of Information Fusion,Naval Aviation University,Yantai Shandong 264001,China;2.Unit 31401 of the People's Liberation Army,Yantai Shandong 264001,China;3.Advanced Technology Research Institute,Beijing Institute of Technology,Beijing 100000,China;4.School of Information and Communication Engineering,Harbin Engineering University,Harbin Heilongjiang 150000,China;5.School of Information and Communication Engineering,Nanjing University of Posts and Telecommunications,Nanjing Jiangsu 210000,China;6.Tianjin Institute of Surveying and Mapping Company Limited,Tianjin 300000,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对辐射源个体识别高精确度、轻量化、实时性的现实应用需求,提出了面向广播式自动相关监测(ADS-B)信号辐射源个体识别的轻量化模型设计方法。根据信号数据特点进行解码处理,并对不均衡样本进行权重调节,改善样本质量;通过分组卷积获取不同维度的细微特征,与初始特征拼接,实现多维互补特征融合,并联同步进行提高识别效率。利用Ghost bottleneck结构实现网络模型压缩与跨层连接,在融合多维特征的同时节省计算资源。实验结果表明,本文算法结构精简,计算量低,识别率达到95.2%,并在不同容量的样本识别中效果稳定。本文算法较好地平衡了辐射源个体识别精确度、轻量化与高时效的需求。

    Abstract:

    Aiming at the practical application requirements of high precision, lightweight and instant for Specific Emitter Identification(SEI), a lightweight model design for radiation source individual recognition of Automatic Dependent Surveillance-Broadcast(ADS-B) signal is proposed in this paper. Firstly, the signal data is decoded according to the characteristics of the signal data, and the weight of the unbalanced sample is adjusted to improve the sample quality. Then, the small features of different dimensions are obtained by grouping convolution and splicing with the initial features to realize multidimensional complementary feature fusion and parallel synchronization to improve the recognition efficiency. Network model compression and cross-layer connection are implemented by using a Ghost bottleneck structure, which tends to save computing resources while integrating multi-dimensional characteristics. The experimental results show that the proposed algorithm has the advantages of simple structure and low computational load, high recognition rate of 95.2%, and a stable recognition effect in different capacity samples. The proposed design better balances the needs of individual identification accuracy, lightweight and efficiency for SEI.

    参考文献
    相似文献
    引证文献
引用本文

王艺卉,闫文君,徐从安,查浩然,桂冠,陈雪梅,葛亮.面向ADS-B信号辐射源个体识别的轻量化模型设计[J].太赫兹科学与电子信息学报,2023,21(9):1100~1108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-03-28
  • 最后修改日期:2023-05-16
  • 录用日期:
  • 在线发布日期: 2023-09-27
  • 出版日期:
关闭