Jetson Nano神经网络物理电磁泄漏安全研究
作者:
作者单位:

北京邮电大学 电子工程学院,北京 100876

作者简介:

吴晨曦(1996-),男,在读硕士研究生,主要研究方向为旁路攻击及机器学习.email:wuchenxi118@126.com.
张洪欣(1969-),男,博士,教授,博士生导师,主要研究方向为无线通信与电磁兼容、通信信号处理、电磁辐射、信息安全、生物医学工程等.
崔晓彤(1995-),女,在读博士研究生,主要研究方向为旁路攻击和深度学习.

通讯作者:

张洪欣 email:hongxinzhang@263.net

基金项目:

国家自然科学基金资助项目(62071057);中央高校基本科研业务费专项资金资助项目(2019XD17)

伦理声明:



Research on electromagnetic leakage safety of Jetson Nano neural network
Author:
Ethical statement:

Affiliation:

School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    如果采用旁路攻击方法对神经网络结构、框架进行攻击,恢复出结构、权重等信息,会产生敏感信息的泄漏,因此,需要警惕神经网络计算设备在旁路攻击领域产生敏感信息泄露的潜在风险。本文基于Jetson Nano平台,针对神经网络及神经网络框架推理时产生的旁路电磁泄漏信号进行采集,设计了基于深度学习方法的旁路攻击算法,对旁路进行分析研究,并对两个维度的安全进行评估。研究表明,良好的网络转换策略能够提升网络分类识别准确率5%~12%。两种评估任务中,针对同一框架下不同结构的典型神经网络推理时,电磁泄漏的分类准确率达到97.21%;针对不同神经网络框架下同一种网络推理时,电磁泄漏的分类准确率达到100%。说明旁路电磁攻击方法对此类嵌入式图像处理器(GPU)计算平台中的深度学习算法隐私产生了威胁。

    Abstract:

    If a side-channel attack can attack the structure and framework of the neural network to recover information such as structure and weight, sensitive information leakage will occur. Therefore, it is important to guard the neural network computing devices against disclosure of sensitive information in the field of side-channel attack. Based on the Jetson Nano platform, a method is designed for the side-channel electromagnetic leakage signal acquisition during the inference of the neural network. The side-channel analysis is conducted by using the deep learning method, and two aspects of security are assessed. Research shows that a good network conversion strategy can improve the classification and recognition accuracy of the network by 5%~12%. In the two evaluation tasks, the classification accuracy of electromagnetic leakage is 97.21% for typical neural network inferences with different structures under the same framework; it reaches 100% for the same kind of network reasoning under different frameworks of neural network. It indicates that the side-channel electromagnetic attack method poses a threat to the privacy of deep learning algorithms in such embedded Graphics Processing Unit(GPU) computing platforms.

    参考文献
    相似文献
    引证文献
引用本文

吴晨曦,张洪欣,崔晓彤. Jetson Nano神经网络物理电磁泄漏安全研究[J].太赫兹科学与电子信息学报,2023,21(9):1144~1149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2021-05-21
  • 最后修改日期:2021-08-09
  • 录用日期:
  • 在线发布日期: 2023-09-27
  • 出版日期:
关闭