基于红外漫反射谱和机器学习的粉末物质识别
作者:
作者单位:

1.北京邮电大学 理学院,北京 100876;2.清华大学 工程物理系,北京 100084

作者简介:

高 颂(1996-),男,在读硕士研究生,主要研究方向为太赫兹与红外光谱识别检测成像.email:gaosong 19960506@163.com.
阎结昀(1978-),男,博士,副教授,博士生导师,主要研究方向为凝聚态理论.
王迎新(1981-),男,博士,副研究员,主要从事太赫兹科学与技术领域的研究工作.
解 研(1981-),女,博士,工程师,主要从事量子级联激光器应用技术研究.

通讯作者:

基金项目:

伦理声明:



Powder compound identification based on infrared diffuse reflectance spectroscopy and machine learning
Author:
Ethical statement:

Affiliation:

1.School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China;2.Department of Engineering Physics,Tsinghua University,Beijing 100084,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    红外光谱可有效携带化合物结构以及化合物组成成分的信息,在化学研究、纯度检测和药物识别领域已得到广泛应用。但在实际应用场景中,由于缺乏标准样品制备的条件,红外光谱识别准确率较低,效率较差,使这项技术受到了极大限制。本文采用可调谐红外量子级联激光器作为激光源,建立记录粉末样品漫反射光谱的实验系统。以葡萄糖和聚乙烯混合粉末漫反射谱为例,通过Kubelka-Munk(K-M)方程和Kramers-Kronig(K-K)关系合成样品的透射谱,并验证漫反射谱还原透射谱的可能性。将光谱数据用于两种神经网络模型中,对混合粉末质量分数进行预测。结果表明,在K-K关系变换下,长短期记忆(LSTM)网络模型预测效果最佳,明显优于BP神经网络模型;在K-M方程变换下,两种神经网络对高质量分数葡萄糖样品的预测都比较准确,对低质量分数的预测较差。两种漫反射光谱校正方法都不同程度地提高了训练结果的准确性,LSTM模型整体优于BP神经网络模型。这些研究结果有助于发展基于频率可调谐或宽谱红外激光的未知混合粉末样品的识别技术。

    Abstract:

    Infrared spectroscopy can effectively carry the information of compound structure and compound composition, which has been widely used in chemical research, purity detection and drug identification. However, in practical application scenarios, due to the lack of standard sample preparation conditions, the low accuracy and low recognition efficiency of infrared spectroscopy also make this technology limited. By using a tunable infrared Quantum Cascade Laser(QCL) as the source, an experimental system for recording the diffuse reflection spectra of powder samples is established. Taking the diffuse reflectance spectrum of a mixed powder of glucose and polyethylene as an example, the Kubelka-Munk(K-M) equation and the Kramers-Kronig(K-K) relations are utilized to synthesize the transmission spectrum of the sample from the experimentally measured diffuse reflectance spectrum of pure glucose, and the possibility of the transformation of the transmission spectrum from the diffuse reflectance spectrum is verified. On this basis, spectroscopic data are applied to two neural network models to predict the mass fraction of mixed powder. The results show that the Long Short-Term Memory(LSTM) predicts the best results under the K-K relations, significantly better than the BP neural network. Under the K-M equation, both neural networks are more accurate in predicting the glucose samples with high mass fraction and poorer in predicting the glucose samples with low mass fraction. Both diffuse reflectance spectral correction methods improve the accuracy of the training results, and the LSTM prefers to the BP neural network. This work contributes to the development of the identification of unknown mixed powder samples based on frequency-tunable or broad spectral infrared lasers.

    参考文献
    相似文献
    引证文献
引用本文

高颂,阎结昀,王迎新,解研.基于红外漫反射谱和机器学习的粉末物质识别[J].太赫兹科学与电子信息学报,2023,21(10):1247~1256

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2022-02-12
  • 最后修改日期:2022-03-14
  • 录用日期:
  • 在线发布日期: 2023-10-25
  • 出版日期: