实测卫星频谱占用状态拟合与预测方法
作者:
作者单位:

1.1a南京邮电大学,物联网学院,江苏 南京 210003;5.1b南京邮电大学,卫星通信研究所,江苏 南京 210003;2.中国移动通信集团江苏有限公司,江苏 南京 210029;3.江苏正赫通信息科技有限公司,江苏 南京 210018

作者简介:

王海荣(1998-),女,在读硕士研究生,主要研究方向为卫星通信.email:13937683911@163.com.
唐胜华(1998-),男,在读硕士研究生,主要研究方向为卫星物联网.
丁晓进(1981-),男,博士,教授,主要研究方向为空间信息网络、卫星物联网、大数据智能分析及应用.
张更新(1967-),男,博士,教授,博士生导师,主要研究方向为空间信息网络、卫星通信等.

通讯作者:

基金项目:

伦理声明:



Fitting and forecasting method of spectrum occupancy state of measured satellite
Author:
Ethical statement:

Affiliation:

1.1aSchool of the Internet of Things ,Nanjing University of Posts and Telecommunications, Jiangsu Nanjing 210003;5.1b Institute of Satellite Communication ,Nanjing University of Posts and Telecommunications, Jiangsu Nanjing 210003;2.Jiangsu Co. Ltd. , China Mobile Group Nanjing Jiangsu 210029,China;3.Jiangsu Truecomm Information Technology Co. Ltd.,Nanjing Jiangsu 210018,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    由于在不同时间、不同空间卫星接收数据底噪是动态起伏的,传统建模固定门限的方法存在缺陷。本文在时间维度上对卫星频谱感知数据的频谱占用模型进行分析,利用自适应阈值法确定噪声门限,对卫星频谱数据进行预处理,得到卫星频谱占用长度序列。为对卫星频谱的态势进行有效的统计分析,利用泊松分布和指数分布方法对频谱占用时间长度序列的概率密度曲线进行拟合,得到了适用于卫星频谱占用时间序列的概率分布模型。基于所得的卫星频谱占用状态模型,通过两状态马尔可夫链计算出卫星信道某一频点的状态转移矩阵,从而预测出信道占用和空闲的概率。利用卫星频谱感知数据构建的数据集进行反向传播(BP)神经网络训练,预测某一频点的占用长度。通过计算BP神经网络与传统的长短期记忆(LSTM)神经网络预测法的均方根误差(RMSE),得到LSTM神经网络的RMSE为2.208 1,BP神经网络的RMSE为0.172 8。评估结果表明,BP神经网络准确度高。

    Abstract:

    The spectral occupancy model of satellite spectrum sensing data in the temporal dimension is analyzed. Because the bottom noises in satellite receiving data are undulated in different time and space, the traditional modeling methods with fixed threshold are defective. Therefore, the adaptive threshold method is introduced to determine the noise threshold and preprocess the satellite spectrum data to obtain the satellite spectrum occupancy length sequence. In order to make an effective statistical analysis on the situation of the satellite spectrum, the probability density curve of the spectral occupation time length series is fitted by using the Poisson and exponential distribution methods, and a probability distribution model suitable for the satellite spectrum occupation time series is obtained. Based on the obtained satellite spectral occupancy state model, the state transfer matrix at a certain frequency point of the satellite channel is calculated by two-state Markov chains to predict the probability of outgoing channel occupancy and idle. In addition, the Back-Propagation(BP) neural network is trained through the data set constructed by satellite spectrum sensing data to predict the occupancy length of a certain frequency point. By calculating the Root Mean Square Error(RMSE) of the BP neural network and the conventional Long Short-Term Memory(LSTM) neural network prediction methods, 0.172 8 and 2.208 1 are obtained respectively. The evaluation results show that the BP neural network bears the advantage of high accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王海荣,唐胜华,肖欣,戴佳,丁晓进,张更新.实测卫星频谱占用状态拟合与预测方法[J].太赫兹科学与电子信息学报,2024,22(3):316~323

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2022-01-02
  • 最后修改日期:2022-03-03
  • 录用日期:
  • 在线发布日期: 2024-04-03
  • 出版日期: