基于国产CPU环境的国产数据库历史数据迁移技术
作者:
作者单位:

1.国网浙江省电力有限公司 信息通信分公司,浙江 杭州 310007;2.国网信息通信产业集团有限公司,北京 102211;3.福建亿榕信息技术有限公司,福建 福州 350001

作者简介:

毛冬(1991-),男,硕士,工程师,主要研究方向为电力信息与通信技术.email:bbbdcf_kk123@163.com.
张辰(1990-),男,硕士,主要研究方向为电力信息与通信技术.
陈又咏(1978-),男,本科,工程师,主要研究方向为信息技术应用创新、电力信息化等.
刘永清(1980-),男,硕士,教授级高级工程师,主要研究方向为信息技术应用创新、电力信息标准化、科技管理.
焦艳斌(1982-),男,硕士,工程师,主要研究方向为信息技术应用创新、电力信息标准化等.

通讯作者:

基金项目:

国网科技基金资助项目(5700?202219187A?1?1?ZN)

伦理声明:



Historical data migration technology of domestic database based on domestic CPU environment
Author:
Ethical statement:

Affiliation:

1.Information Communication Branch of State Grid Zhejiang Electric Power Co., Ltd, Hangzhou Zhejiang 310007;2.State Grid Information & Telecommunication Group Co., Ltd, Beijing 102211, China;3.Fujian Yirong Information Technology Co.,Ltd,Fuzhou Fujian 350001, China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对目前数据迁移方法存在数据迁移耗时长、存储空间最大占用率较高、迁移学习错误率高和被访问数据在线概率低的问题,开展基于国产CPU环境的国产数据库历史数据迁移技术的研究。首先在国产CPU环境中集群部署系统软硬件,提高历史数据在国产数据库之间的迁移速率。其次建立孤立森林模型,将历史数据输入孤立森林模型中展开趋势预测,剔除国产数据库中存在的异常数据,减少待迁移的数据量。最后,构建数据迁移模型,并采用交替优化策略求取模型最优解,完成国产数据库历史数据的迁移。实验结果表明,该方法的数据迁移时间为18 min,储存空间最大占用率在10%~25%之间,ALC指标值为0.78~0.95,被访问数据在线概率能够始终保持在97%以上,证明该方法数据迁移耗时较短,存储空间最大占用率较低,迁移学习的错误率低,访问效率高,具有较好的应用效果。

    Abstract:

    In view of the problems of long data migration, high maximum occupancy rate of storage space, high error rate of transfer learning and low online probability of visited data, the historical data migration technology of domestic database based on domestic Central Processing Unit(CPU) environment is studied. Firstly, the system software and hardware are clustered and deployed in the domestic CPU environment to improve the migration rate of historical data between domestic databases. Secondly, an isolation forest model is established, and the historical data is input into the isolation forest model for trend prediction, thereby eliminating the abnormal data in the domestic database, and reducing the amount of data to be migrated. Finally, a data migration model is constructed, and an alternating optimization strategy is adopted to find the optimal solution of the model, thus completing the migration of historical data in domestic databases. The experimental results show that the data migration time of this method is 18 minutes, and the maximum occupancy rate of storage space is between 10% and 25%, the ALC(Area under the Learning Curve) index value is 0.78~0.95, and the online probability of the accessed data can always be maintained at more than 97%, proving that this method has a short data migration time, a low maximum occupancy rate of storage space, a low error rate of migration learning, and high access efficiency, demonstrating good application effects.

    参考文献
    相似文献
    引证文献
引用本文

毛冬,张辰,陈又咏,刘永清,焦艳斌.基于国产CPU环境的国产数据库历史数据迁移技术[J].太赫兹科学与电子信息学报,2024,22(10):1154~1160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2022-12-28
  • 最后修改日期:2023-05-12
  • 录用日期:
  • 在线发布日期: 2024-10-30
  • 出版日期: