基于改进Faster R-CNN的高铁扣件弹条缺陷检测
作者:
作者单位:

1.河南省科学院 应用物理研究所有限公司,河南 郑州 450000;2.重庆邮电大学 自动化学院,重庆 400065

作者简介:

梁楠(1981-),男,博士,副研究员,硕士生导师,主要从事人工智能方面的研究.email:9662062@qq.com.
张 伟(1984-),男,硕士,教授级高级工程师,硕士生导师,主要从事扩频通信方面的研究.
刘洋龙(2000-),男,在读硕士研究生,主要从事图像处理方面的研究.
荆海林(1981-),男,本科,工程师,主要从事弱电工程领域研究.

通讯作者:

张 伟(1984-),男,硕士,教授级高级工程师,硕士生导师,主要从事扩频通信方面的研究. email:KG08_13@163.com

基金项目:

河南省科学院科技开放合作基金资助项目(210907008);河南省科技攻关基金资助项目(232102210056);河南省科技研发计划联合基金资助项目(235200810049)

伦理声明:



Fastener clips defect detection based on improved Faster R-CNN in high-speed railway
Author:
Ethical statement:

Affiliation:

1.Institute of Applied Physics Co.,Ltd,Henan Academy of Sciences,Zhengzhou Henan 450000,China;2.College of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对复杂光照环境导致的高铁扣件弹条缺陷检测困难问题,提出一种基于改进Faster R-CNN的弹条缺陷检测方法。通过多层卷积神经网络提取缺陷特征图,提高网络对缺陷特征的关注程度,降低对复杂光照环境干扰的影响;设计区域候选网络生成候选区域,并根据候选区域进行池化,在特征图中提取相对应的具体缺陷位置;利用区域候选网络的全连接网络层计算获得缺陷的具体类别与精确位置,得到最终的检测结果。所提算法可充分抑制光照环境干扰影响,显著增强缺陷特征的表征能力;简化了图像预处理环节,降低了对原始图像成像质量的要求。实验结果表明,所提算法能够实现对高铁扣件弹条缺陷的有效检测。与现有算法相比,具有较高的精确度和较强的鲁棒性,运算效率也得到显著提升。

    Abstract:

    In response to the difficulty in detecting defects in high-speed rail clip springs caused by complex lighting environments, an improved Faster Region Convolutional Neural Networks(R-CNN)-based defect detection method for clip springs is proposed. By extracting defect feature maps through multi-layer convolutional neural networks, the network's attention to defect features is enhanced, and the impact of interference from complex lighting environments is reduced. A region proposal network is designed to generate candidate regions, and based on these regions, pooling is performed to extract the corresponding specific defect locations in the feature maps. The fully connected layers of the region proposal network are employed to calculate the specific categories and precise locations of defects, yielding the final detection results. The proposed algorithm can fully suppress the interference of lighting environments, significantly enhance the representation ability of defect features, simplify the image pre-processing stage, and reduce the requirements for the quality of the original image. Experimental results show that the proposed algorithm can effectively detect defects in high-speed rail clip springs, and compared to existing algorithms, it has a higher accuracy, stronger robustness, and significantly improved computational efficiency.

    参考文献
    相似文献
    引证文献
引用本文

梁楠,张伟,刘洋龙,荆海林.基于改进Faster R-CNN的高铁扣件弹条缺陷检测[J].太赫兹科学与电子信息学报,2024,22(11):1221~1227

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-09-08
  • 最后修改日期:2024-01-04
  • 录用日期:
  • 在线发布日期: 2024-12-11
  • 出版日期:
关闭