基于改进粒子群‒牛顿算法级联的双星定位方法
作者:
作者单位:

1.南京邮电大学,通信与信息工程学院,江苏 南京 210003;2.南京邮电大学,通信与网络技术国家地方联合工程研究中心,江苏 南京 210003

作者简介:

杨 光(1998-),男,在读硕士研究生,主要研究方向为卫星无源定位.email:yg19991314@163.com.
屈德新(1966-),男,博士,副教授,博士生导师,主要研究方向为卫星无源定位、卫星通信等.
张更新(1966-),男,博士,教授,博士生导师,主要研究方向为卫星通信、卫星导航与测控、深空通信等.

通讯作者:

杨 光 (1998-),男,在读硕士研究生,主要研究方向为卫星无源定位.email:yg19991314@163.com.

基金项目:

国家自然科学基金资助项目(U21A20450)

伦理声明:



Dual-satellite positioning method based on cascaded IPSO‒Newton algorithm
Author:
Ethical statement:

Affiliation:

1.College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications,Nanjing Jiangsu 210003,China;2.National Local Joint Engineering Research Center for Communication and Network Technology, Nanjing University of Posts and Telecommunications,Nanjing Jiangsu 210003,China

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    双星时差(TDoA)/频差(FDoA)定位因其只需利用2颗卫星便可对辐射源进行定位,成本和实现难度低于多卫星定位体制,实时性优于单卫星定位,更适合实际应用。为解决时频差方程解算过程中伴有的非线性最优化问题,提出一种改进粒子群算法(IPSO);针对双星时频差定位系统采用牛顿算法定位精确度较高,但在实际定位中采用该算法存在目标位置初值设置的收敛盲区问题,提出基于改进粒子群-牛顿(IPSO-Newton)级联定位方法。利用IPSO算法获得可靠收敛的初定位值,并以此作为迭代初值;级联使用牛顿法进行定位,提高定位精确度并避免初值不收敛问题。仿真实验表明,所提算法比Newton法有效初始点选取成功率提高了48.15%,节省了计算量,提高了算法的计算效率。

    Abstract:

    Dual-satellite Time-Difference of Arrival(TDoA) and Frequency-Difference of Arrival (FDoA) positionings utilize just two satellites to locate the emitter, bearing lower cost and difficulty than multi-satellite positioning, and better real-time performance than single-satellite positioning system, more suitable for practical applications. In order to solve the nonlinear optimization problem in the process of solving the TDoA/FDoA equation, an Improved Particle Swarm Optimization(IPSO) algorithm is put forward. Dual-satellite TDoA/FDoA location systems use Newton method with high precision, but there exists unsolvable blind areas of initial value of iteration. To address this issue, an cascaded localization method of IPSO and Newton iteration is proposed, in which the IPSO algorithm gives coarse localization result with rapid speed and reliable convergence, and this coarse result is used as the initial value of Newton iteration, so as to reduce the positioning error and avoid non-convergence. By analyzing the simulation results, the proposed algorithm not only increases the success rate of effective initial point selection by 48.15% compared to the Newton method, but also cuts the computation and improves the computational speed.

    参考文献
    相似文献
    引证文献
引用本文

杨光,屈德新,张更新.基于改进粒子群‒牛顿算法级联的双星定位方法[J].太赫兹科学与电子信息学报,2024,22(11):1253~1261

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-04-28
  • 最后修改日期:2023-06-05
  • 录用日期:
  • 在线发布日期: 2024-12-11
  • 出版日期:
关闭