摘要
针对大功率折叠波导行波管(TWT)对高导热衰减材料的迫切需求,开展了硼掺杂金刚石膜制备和介电性能研究,在此基础上研制出硼掺杂金刚石衰减器并探究衰减器性能的热稳定性。研究结果表明,硼掺杂浓度为1.81×1
作为折叠波导行波管核心零部件之一的衰减器是由衰减材料加工成特定形状的微波吸收体,其主要作用是抑制自激振荡,消除有害的电磁模式和增强带宽等,从而提高行波管的稳定性。性能优异的衰减器需要在工作频带内具有足够的衰减量和良好的频率匹配特
基于化学气相沉积法制备的硼掺杂金刚石膜具有优异的热学、力学和可调节的介电性能,在折叠波导行波管用衰减材料领域具有广泛的应用前
然而,当折叠波导行波管处于高占空比或连续波工作状态时,衰减器吸收瓦量级甚至更高的微波能量并转换成热能,大量热量的累积必然引起衰减器温度的升高。硼掺杂金刚石膜的介电性能特别是介电常数和损耗角正切受到温度变化的影
采用MPCVD法,以B2H6、CH4和H2为反应气源,在直径为40 mm的N(100)型单晶硅衬底上沉积硼掺杂金刚石膜。沉积过程中各工艺参数设置如下:微波功率1 400 W,基片温度800 °C,反应室气体压强12.8 kPa。沉积结束后去除Si衬底,经研磨、抛光后获得厚度为0.3 mm的硼掺杂金刚石膜,利用扫描电子显微镜观察硼掺杂金刚石膜的表面形貌;采用激光光源为532 nm的拉曼光谱仪分析硼掺杂金刚石膜中的金刚石相和非金刚石碳相;利用红外光谱仪研究金刚石膜中的硼掺杂浓度;利用矢量网络分析仪结合材料介电性能测试装置,测量硼掺杂金刚石膜在75~110 GHz范围内的介电常数和损耗角正切值。采用飞秒激光加工系统,将硼掺杂金刚石膜加工成设计的衰减器。利用矢量网络分析仪测量硼掺杂金刚石衰减器在85~110 GHz的频率匹配特性和微波衰减能力。为研究温度对硼掺杂金刚石衰减器性能的影响,将衰减器装配于矩形波导中并在烘箱中进行加热,设定烘箱温度分别为30 °C、50 °C、70 °C和90 °C,当烘箱温度达到设定温度后保温15 min,取出装配有衰减器的矩形波导,连接至矢量网络分析仪进行测量。

图1 硼掺杂金刚石膜的表面形貌(a)和拉曼光谱图(b)
Fig.1 Surface morphology (a) and Raman spectrum (b) of the boron-doped diamond film
的拉曼峰,说明制备的硼掺杂金刚石膜中非金刚石碳含量较少,金刚石膜的品质相对较高。

图2 硼掺杂金刚石膜的红外吸收系数曲线
Fig.2 Infrared absorption coefficient curve of the boron- doped diamond film
受主和施主的浓度差(Na-Nd
Na-Nd=2.1×1 | (1) |
式中α为硼掺杂金刚石在1 250~1 300 c
出金刚石膜中硼掺杂浓度为1.81×1
复介电常数和磁导率是评价微波衰减材料的重要指标。硼掺杂金刚石膜中并未引入磁性物质,因而其复磁导率的实部和虚部分别为1和0,即硼掺杂金刚石膜并不会形成有效的磁损

图3 衰减材料介电性能测试装置(a)与硼掺杂金刚石膜介电性能测量结果(b)
Fig.3 Picture of dielectric property test platform for attenuation materials(a) and dielectric constant and loss tangent of boron-doped diamond film measured in W-band(b)
基于前期衰减器结构尺寸优化结

图4 在室温下硼掺杂金刚石衰减器S参数测量结果
Fig.4 Measured S-parameters of boron-doped diamond attenuator at room temperature
实际使用过程中,衰减器吸收电磁波能量并转换成热能,衰减器温度不可避免地升高。但由于衰减器装配于折叠波导行波管内部,无法对其工作过程中温度进行有效采集。因此,采用数值有限元方法模拟了折叠波导行波管内部实际工况下硼掺杂金刚石衰减器的稳态温度分布。在衰减器楔形结构内表面上施加3 W的微波功率,传热形式为热传导和热对流,外界环境温度为25 °C,硼掺杂金刚石衰减器的温度分布如

图5 硼掺杂金刚石衰减器表面温度的模拟分析结果
Fig.5 Simulation result of temperature field distribution of boron-doped diamond attenuator
为进一步研究温度变化对硼掺杂金刚石衰减器的频率匹配特性和微波衰减能力的影响,分别测量衰减器在30 °C、50 °C、70 °C和90 °C下的S参数,如

图6 硼掺杂金刚石衰减器反射系数(a)和传输系数(b)随温度变化曲线
Fig.6 Measured return loss (a) and insertion loss (b) of boron-doped diamond attenuator as a function of temperature
的波动,表现出良好的热稳定性。
采用MPCVD法制备了硼掺杂浓度为1.81×1
参考文献
雷文强,蒋艺,胡林林,等. 0.14 THz折叠波导行波管中衰减器的设计[J]. 太赫兹科学与电子信息学报, 2015,13(4):533-535, 555. [百度学术]
LEI Wenqiang,JIANG Yi,HU Linlin,et al. Design of an attenuator for 0.14 THz folded waveguide traveling-wave tube[J]. Journal of Terahertz Science and Electronic Information Technology, 2015,13(4):533-535,555.doi:10.11805/TKYDA201504.0533. [百度学术]
CAI Jun,FENG Jinjun,WU Xianping,et al. Analysis and test preparation of attenuator for W-band folded waveguide TWT[C]//2007 IEEE International Vacuum Electronics Conference. Kitakyushu,Japan:IEEE, 2007:1-2. doi:10.1109/IVELEC.2007. 4283213. [百度学术]
巩华荣,宫玉彬,唐涛,等. 折叠波导行波管切断匹配的设计[J]. 强激光与粒子束, 2011,23(2):445-448. [百度学术]
GONG Huarong, GONG Yubin,TANG Tao,et al. Design of sever for folded waveguide traveling wave tubes[J]. High Power Laser and Particle Beams, 2011,23(2):445-448.doi:10.3788/HPLPB20112302.0445. [百度学术]
赵世柯,鲁燕萍. 真空电子陶瓷材料技术发展与应用[J]. 真空电子技术, 2021(5):30-36. [百度学术]
ZHAO Shike,LU Yanping. Technology development and applications of vacuum electronic ceramic materials[J]. Vacuum Electronics, 2021(5):30-36. [百度学术]
陈贵巧,李晓云,丘泰. 高导热AlN基复相微波衰减陶瓷的研究进展[J]. 材料科学与工程学报, 2007,25(2):321-324. [百度学术]
CHEN Guiqiao,LI Xiaoyun,QIU Tai. Research progress of AlN-based microwave attenuation composite ceramics with high thermal conductivity[J]. Journal of Materials Science and Engineering, 2007,25(2):321-324. [百度学术]
DING Minghui,LIU Yanqing,LU Xinru,et al. Boron doped diamond films: a microwave attenuation material with high thermal conductivity[J]. Applied Physics Letters, 2019,114(16):162901. doi:10.1063/1.5083079. [百度学术]
HUA Chenyi,ZHANG Xiaoqing,CAI Jun,et al. The new application of Boron-doped diamond film: attenuator for high frequency and high power vacuum electronic devices[J]. Diamond and Related Materials, 2022(124):108944. doi:10.1016/j.diamond.2022. 108944. [百度学术]
石明,鲁燕萍,刘征,等. 微波管用衰减材料的研究[J]. 真空电子技术, 2007(3):31-37,51. [百度学术]
SHI Ming,LU Yanping,LIU Zheng,et al. Study of microwave attenuating materials used in MWTs[J]. Vacuum Electronics, 2007(3):31-37,51.doi:10.3969/j.issn.1002-8935.2007.03.009. [百度学术]
陈昀,梁田,杨磊,等. AlN基衰减瓷的制备工艺及其性能研究[J]. 真空电子技术, 2017(5):24-26. [百度学术]
CHEN Yun,LIANG Tian, YANG Lei,et al. Study on preparation and characteristics of AlN based absorbing ceramics[J]. Vacuum Electronics, 2017(5): 24-26.doi:10.16540/j.cnki.cn11-2485/tn.2017.05.006. [百度学术]
POLYAKOV V I,RUKOVISHNIKOV A I,GARIN B M,et al. Electrically active defects,conductivity,and millimeter wave dielectric loss in CVD diamonds[J]. Diamond and Related Materials, 2005,14(3/7):604-607. doi:10.1016/j.diamond.2004. 10.001. [百度学术]
LI Y F,SU J J,LIU Y Q,et al. Design of a new TM021 mode cavity type MPCVD reactor for diamond film deposition[J]. Diamond and Related Materials, 2014(44):88-94. doi:10.1016/j.diamond.2014.02.010. [百度学术]
LIU Y K,TSO P L,LIN I N,et al. Comparative study of nucleation processes for the growth of nanocrystalline diamond[J]. Diamond and Related Materials, 2006,15(2/3):234-238. doi:10.1016/j.diamond.2005.06.020. [百度学术]
SEO J H,WU H,MIKAEL S,et al. Thermal diffusion Boron doping of single-crystal natural diamond[J]. Journal of Applied Physics, 2016,119(20):205703. doi:10.1063/1.4949327. [百度学术]
陈政伟,范晓孟,黄小萧,等. 高温吸波陶瓷材料研究进展[J]. 现代技术陶瓷, 2020,41(1/2):1-98. [百度学术]
CHEN Zhengwei,FAN Xiaomeng,HUANG Xiaoxiao,et al. Research progress and prospection on high-temperature wave-absorbing ceramic materials[J]. Advanced Ceramics, 2020,41(1/2):1-98.doi:10.16253/j.cnki.37-1226/tq.2020.01.001. [百度学术]
CALAME J P,ABE D K. Application of advanced materials technologies to vacuum electronic devices[J]. Proceedings of the IEEE, 1999,87(5):840-864. doi:10.1109/5.757257. [百度学术]
化称意,王松冕,李莉莉,等. W 波段折叠波导行波管用硼掺杂金刚石衰减器的设计与性能研究[J]. 真空电子技术, 2021(3): 32-35,53. [百度学术]
HUA Chenyi,WANG Songmian,LI Lili,et al. Design and study of boron-doped CVD diamond attenuator for W-band folded waveguide traveling wave tube[J]. Vacuum Electronics, 2021(3):32-35,53.doi:10.16540/j.cnki.cn11-2485/tn.2021.03.06. [百度学术]