摘要
太赫兹波在生物医学领域具有非电离、无标签、实时等优点,因此在该领域具有巨大的发展潜力。为了解决介电常数相近的生物组织之间的区分问题,设计并制造了一种具有Fano共振特性的超材料,并进行太赫兹反射成像实验。模拟和实验结果显示,在0.82 THz下,该超材料的反射灵敏度达到132 GHz/RIU。该超材料不仅可以提高标准成像分辨率板的对比度,还可以将肌肉组织和脂肪组织之间对比度提高约7.5%。这些结果表明,该超材料能够显著提高生物组织切片图像的对比度,为今后太赫兹应用于临床组织样本奠定了实验和理论基础。
太赫兹波是一种介于0.1~10 THz(波长为30~3 000 μm)频率范围内的电磁波,其位于微波和红外波之
为了增强太赫兹成像中介电常数相似生物组织的区别度,Quentin等采用了形态学扩展和折射率阈值的结合方法,分别实现了80%的乳腺癌组织分类敏感性和82%的特异
本文提出了一种高灵敏度的太赫兹超表面,可用于生物组织切片的成像。该器件是由周期性排列的裂隙方形结构构成。模拟和实验结果显示,在反射模式下,该器件共有0.67 THz和0.82 THz两个共振频率,其中在0.82 THz下获得最高反射率灵敏度为132 GHz/RIU。对成像分辨率板和生物组织切片进行了太赫兹反射成像实验,实验结果表明,太赫兹超材料能够显著提高不同组织之间的对比度。本次研究结果为提高太赫兹成像技术在癌症组织切片等领域的图像对比度奠定了基础,同时也推动了太赫兹技术在临床样本检测方面的应用。
为了实现对生物组织样本的快速高灵敏度检测,本文制作了如

图1 超材料结构示意图
Fig.1 Schematic representation of the metamaterial structure
本次实验所使用的为全光纤太赫兹时域光谱成像系统,其成像设备原理如

图2 全光纤太赫兹时域光谱成像系统原理图(PCA:光电导天线)
Fig.2 Schematic diagram of an all-fiber terahertz time-domain spectral imaging system(PCA:photoconductive antenna )
超材料的模拟(S11(ω)为模拟的反射系

图3 超材料的反射率
Fig.3 Reflectance of metamaterial
(1) |

图4 超材料的数值模拟图。(a)~(c) 是0.67 THz下的表面电流、电场、磁场示意图;(d)~(f) 是0.82 THz下的表面电流、电场、磁场示意图
Fig.4 The numerical simulation of the metamaterial. (a)~(c) are the schematics of the surface current, electric field, magnetic field at 0.67 THz; (d)~(f) are the schematics of the surface current, electric field, and magnetic field at 0.82 THz.
式中:为反射率的共振频移;是样品折射率的变化。在其他条件一定的情况下,传感器的灵敏度越大,对于一些微弱物质的检测能力越强,对物质的信号放大效果越好。
通过数据模拟可以获得超材料的谐振频率随被覆盖物的折射率变化而变化,如
(2) |
式中和分别为样品信号和参考信号。

图5 超材料的灵敏度
Fig.5 Sensitivity of the metamaterial
进行生物组织切片实验之前,首先对标准件——成像分辨率板进行了太赫兹成像实验。选择1.5 mm分辨率条,对其进行太赫兹成像对比实验,结果如图

图6 成像分辨率板实验
Fig.6 Experiment of imaging resolution plate
为了使生物组织切片与超材料充分接触,根据文献[

图7 样品夹持装置
Fig.7 Splint device for sample
首先获取了新鲜猪肉组织样品切片(含脂肪和肌肉组织),未使用夹持装置进行了太赫兹成像实验。其脂肪-肌肉组织的实验结果如

图8 (a)和(c)分别是相同组织在裸硅和超材料上的可见光图像;(b)和(d)分别是组织在裸硅和超材料上的太赫兹图像。红线表示肌肉组织和脂肪组织的分界线。
Fig.8 (a) and (c) are visible light images of the same pork tissue on bare-silicon and metamaterial, respectively; (b) and (d) are THz images on bare-silicon and metamaterial, respectively. The red lines show the dividing between muscle tissue and fat tissue
随后重新获取一块新鲜猪肉组织样品切片(含脂肪和肌肉组织),使用夹持装置进行了太赫兹成像实验。实验结果(0.377 THz频率)如

图9 太赫兹成像实验
Fig.9 THz imaging experiment
本文设计并制作了一款具有高灵敏度的太赫兹超材料,并将其应用于生物组织样本。实验结果表明,通过使用超材料可以提高标准成像分辨率板的对比。脂肪-肌肉组织之间的图像对比度明显提高,验证了本文所设计制作的超材料具有灵敏度高、操作简单等优点。后续通过进一步优化超材料生物材料和结构,获得具有更高灵敏度的超材料,进而可以对介电常数相近的组织切片进行区分。本次研究的结果推动了今后太赫兹技术应用于临床医学,为医生提供一种快速有效的诊断方法。
参考文献
YANG Ke,LI Jining,LAMY DE LA CHAPELLE M,et al. A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and Strand displacement amplification[J]. Biosensors and Bioelectronics, 2021(175): 112874. doi:10.1016/j.bios.2020.112874. [百度学术]
郑卓锐,钟慧,聂勇潇,等. 基于太赫兹超材料的牛血清白蛋白传感器研究[J]. 中国激光, 2023,50(17):200-207. [百度学术]
ZHENG Zhuorui,ZHONG Hui,NIE Yongxiao,et al. Research of bovine serum albumin sensor based on terahertz metamaterials[J]. Chinese Journal of Lasers, 2023,50(17):200-207. doi:10.3788/CJL230881. [百度学术]
YANG Xiang,ZHAO Xiang,YANG Ke,et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016,34(10):810-824. doi:10.1016/j.tibtech.2016.04.008. [百度学术]
CHEN Hua,CHEN T H,TSENG T F,et al. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model[J]. Optics Express, 2011,19(22):21552-21562. doi:10.1364/OE.19.021552. [百度学术]
CHEN Hua,HAN Juan,WANG Dan,et al. In vivo estimation of breast cancer tissue volume in subcutaneous xenotransplantation mouse models by using a high-sensitivity fiber-based terahertz scanning imaging system[J]. Frontiers in Genetics, 2021(12): 700086. doi:10.3389/fgene.2021.700086. [百度学术]
KUCHERYAVENKO A S,CHERNOMYRDIN N V,GAVDUSH A A,et al. Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 101.8: brain tissue heterogeneity[J]. Biomedical Optics Express, 2021,12(8):5272-5289. doi:10.1364/BOE.432758. [百度学术]
NIKITKINA A I,BIKMULINA P Y,GAFAROVA E R,et al. Terahertz radiation and the skin: a review[J]. Journal of Biomedical Optics, 2021,26(4):043005. doi:10.1117/1.JBO.26.4.043005. [百度学术]
VAFAPOUR Z,KESHAVARZ A,GHAHRALOUD H. The potential of terahertz sensing for cancer diagnosis[J]. Heliyon, 2020,6(12):e05623. doi:10.1016/j.heliyon.2020.e05623. [百度学术]
RONG Lu,LATYCHEVSKAIA T,CHEN Chunhai,et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue[J]. Scientific Reports, 2015(5):8445. doi:10.1038/srep08445. [百度学术]
HERNANDEZ-CARDOSO G G,ROJAS-LANDEROS S C,ALFARO-GOMEZ M,et al. Terahertz imaging for early screening of diabetic foot syndrome:a proof of concept[J]. Scientific Reports, 2017,7(1):42124. doi:10.1038/srep42124. [百度学术]
FREER S,SUI Cong,HANHAM S M,et al. Hybrid reflection retrieval method for terahertz dielectric imaging of human bone[J]. Biomedical Optics Express, 2021,12(8):4807-4820. doi:10.1364/BOE.427648. [百度学术]
SHI Wei,WANG Yuezheng,HOU Lei,et al. Detection of living cervical cancer cells by transient terahertz spectroscopy[J]. Journal of Biophotonics, 2021,14(1):e202000237. doi:10.1002/jbio.202000237. [百度学术]
CASSAR Q,CARAVERA S,MACGROGAN G,et al.Terahertz refractive index-based morphological dilation for breast carcinoma delineation[J]. Scientific Reports, 2021(11):6457. doi:10.1038/s41598-021-85853-8. [百度学术]
HAHNEL D,GOLLA C,ALBERT M,et al.A multi-mode super-Fano mechanism for enhanced third harmonic generation in silicon metasurfaces[J]. Light,Science & Applications, 2023,12(5):847-854. [百度学术]
徐文道. 太赫兹-超材料-纳米材料联用的农产品安全检测机理与方法[D]. 杭州:浙江大学, 2018. [百度学术]
XU Wendao. Agro-product safety detection by integrating terahertz spectroscopy,metamaterials and nanomaterials:mechanisms and methods[D]. Hangzhou,Zhejiang,China:Zhejiang University, 2018. [百度学术]
LEE S H,SHIN S,ROH Y,et al. Label-free brain tissue imaging using large-area terahertz metamaterials[J]. Biosensors and Bioelectronics, 2020(1)170:112663. doi:10.1016/j.bios.2020.112663. [百度学术]
ROH Y,LEE S H,KWAK J,et al. Terahertz imaging with metamaterials for biological applications[J]. Sensors and Actuators B, Chemical, 2022(352):130993. doi:10.1016/j.snb.2021.130993. [百度学术]
张向,王玥,张晓菊,等. 可用于农药传感的多带太赫兹超材料吸收器[J]. 太赫兹科学与电子信息学报, 2022,20(11):1107-1112. [百度学术]
ZHANG Xiang,WANG Yue,ZHANG Xiaoju,et al. Multiband terahertz metamaterial absorber for pesticide sensing[J]. Journal of Terahertz Science and Electronic Information Technology, 2022,20(11):1107-1112. doi: 10.11805/TKYDA2021393. [百度学术]
葛宏义,李丽,蒋玉英,等. 基于双开口金属环的太赫兹超材料吸波体传感器[J]. 物理学报, 2022,71(10):433-445. [百度学术]
GE Hongyi,LI Li,JIANG Yuying,et al. Double-opening metal ring based terahertz metamaterial absorber sensor[J]. Acta Physica Sinica, 2022,71(10):433-445. doi:10.7498/aps.71.20212303. [百度学术]
SUN Ran,LI Wenyu,MENG Tianhua,et al. Design and optimization of terahertz metamaterial sensor with high sensing performance[J]. Optics Communications, 2021(494):127051. doi:10.1016/j.optcom.2021.127051. [百度学术]
ASHWORTH P C,PICKWELL-MACPHERSON E,PROVENZANO E,et al. Terahertz pulsed spectroscopy of freshly excised human breast cancer[J]. Optics Express, 2009,17(15):12444-12454. doi:10.1364/oe.17.012444. [百度学术]
BOWMAN T,EL-SHENAWEE M,CAMPBELL L K. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas[J]. Biomedical Optics Express, 2016,7(9):3756-3783. doi:10.1364/BOE.7.003756. [百度学术]
VOHRA N,BOWMAN T,BAILEY K,et al. Terahertz imaging and characterization protocol for freshly excised breast cancer tumors[J]. Journal of Visualized Experiments, 2020,(158):e61007. doi:10.3791/61007. [百度学术]