摘要
高性能宽谱上转换成像器件在医疗、食品安全、无损检测和国家安全等领域中发挥着重要作用,但现有半导体上转换器件因探测范围窄、上转换效率低而受到限制。为实现更宽谱和高效的上转换,本文通过优化LED结构,显著提升了棘轮上转换器件的性能。改进后的LED发光效率提升了2个数量级,μA量级的驱动电流下即可开启发光,发光光谱更接近规则洛伦兹线型,器件整体面发光均匀性也显著提升。研究明确了性能优化原则,并为未来上转换器件的改进提供了参考方向。
将光子从低能转换为高能的上转换过程有望用于高效太阳能电池、高灵敏度生物成像和大幅面红外/太赫兹(Terahertz,THz)成
基于半导体的上转换是另一种有前景的上转换机制,红外或THz光子首先被光电探测器吸收,然后光生载流子驱动发光二极管(Light Emitting Diode,LED)发射近红外光,从而实现上转
针对QRIP-LED器件上转换效率过低的问题,本文采用优化的GaAs基双异质结LED结构提升器件上转换性能。详细研究了优化前、后器件中LED的性能,并通过发光光谱研究了优化后器件在单色性及峰值发光波长方面与未优化器件的区别;通过对发光效率研究对比了器件优化后内外量子效率情况,并通过速率方程理论拟合得出未优化器件的内量子效率,揭示了未优化QRIP-LED器件上转换效率低的根本原因。

图1 器件结构及原理示意图
Fig.1 Device structure and principle diagram
其上转换能带微观机制示意图如
上转换器件的响应光电流谱及LED的发射谱如
器件的制备工艺如下:将生长完成的QRIP-OLED外延片清洗干净后对其进行解理;随后,利用标准光刻工艺对其进行光刻与干法刻蚀以形成台面结构,并利用金属沉积和剥离工艺制备p型(Ti/Pt/Au:25 nm/55 nm/300 nm)和n型(Pd/Ge/Ti/Pt/Au:55 nm/100 nm/25 nm/55 nm/300 nm)电极,之后进行快速热退火形成欧姆接触;最后,对器件电极打线和封装。
QRIP-OLED器件的实物图如

图2 器件展示及伏安特性
Fig.2 Device display and volt-ampere characteristics
利用海洋光学光纤光谱仪(Ocean insight HR6 NIR)对器件光谱进行测试,利用CCD相机(Andor iKon-DU934-BEX2)进行器件发光均匀性测试。对于光功率的测量以常温下有无窗片时的数据进行校正:在常温下光功率计(Thorlabs S130C)紧贴器件测量所得值与透过低温恒温器与窗片所测结果进行对比,得出一个系数,这个系数作为低温下器件在低温恒温器中产生的各种损耗的校正标准。

图3 ULED与OLED发光情况对比
Fig.3 Comparison of the luminescence of ULED and OLED
未优化的器件一方面内量子效率较低,另一方面内部缺陷可能造成参与辐射复合的载流子并非近似的标准玻尔兹曼分布,导致的结果就是随着发光波长(或能量)的变化,发光强度发生明显的涨落变化,这种不连续性体现在发光光谱上就是谱线形状不规则光滑,无法用洛伦兹函数近似拟合。而优化后的器件发光内量子效率高,且参与发光的载流子较为符合标准玻尔兹曼分布,复合效率高,复合速率涨落小,因此优化器件的发光光谱更加规则。
为进一步研究2种LED的性能差异,对器件的电致发光效率(Electroluminescent Efficiency,ELE)进行表征。

图4 两种器件发光效率对比
Fig.4 Comparison of the luminous efficiency of the two devices
为进一步了解二者性能差异的根本原因,需弄清不同温度下的LED中的复合机制。SRH非辐射复合、辐射复合和俄歇复合共同决定了LED的发光特性。ABC模型是研究LED中这3个主要复合机制的最简单且使用最广泛的方
Ryu
(1) |
式中:J为注入电流密度;ηmax和Jmax为IQE的最大值和对应的注入电流密度。
通过测量与电流密度有关的电致ELE可以确切知道Jmax,并可根据测量结果拟合ηmax。该方法指出,在不确定A、B、C参数的情况下,对于给定的Jmax和ηmax,仅存在一条对应的IQE-J曲线。

图5 两种LED能带结构及复合速率对比
Fig.5 Comparison of the energy band structures and recombination rates of the two LEDs
如
综上所述,OLED中辐射复合效率更高,而ULED中复合效率较低,主要是由于较薄的激活区无法有效捕获载流子,且较低的势垒难以有效限制载流子的流失。此外,OLED通过提高激活区厚度和提升势垒高度,不仅提升了载流子的复合效率,还提高了光子提取效率。这些改进使OLED的平均内量子效率显著高于ULED。在高效上转换成像器件的设计中,保证LED辐射复合效率的最大化是提高整体器件效率的关键,但LED相对的优化结构是否会切实提升器件上转换效率还有待进一步的验证,如LED势垒高度对于器件内部整体电势分布的影响也有待进一步的理论及实验论证,本文主要聚焦点为器件中LED的特性,着重分析采用OLED结构后,集成的上转换器件中LED的性能表现。
除发光效率外,LED的面发光均匀性也与其上转换特性息息相关。利用CCD相机进行LED器件发光均匀性评估,

图6 ULED、OLED电致发光均匀性照片
Fig.6 Photos of ULED and OLED luminous uniformity
Ref. | operation temperature | uniformity | EQE | opening conditions |
---|---|---|---|---|
[ | 10 K |
![]() | 2.0% | 1.65 V |
[ | 4.5 K |
![]() | 2.3% | 1.8 V |
[ | 4.5 K |
![]() | - | 0.1 μA |
[ | 4.2 K |
![]() | 2.3% | 1.55 V |
this work | 8 K |
![]() | 2.4% | 0.01 mA |
本文系统地研究了QRIP-LED的器件性能,结果表明QRIP-OLED中LED的发光效率比QRIP-ULED器件中LED的发光效率高出2个数量级,LED发射光谱更加规则,发射峰值波长更接近理论预期,并在低温、弱驱动电流下,QRIP-OLED表现出极高的表面均匀性,这些特性意味着QRIP-LED在上转换效率和成像均匀性方面将有显著的提升。
参考文献
ZOU W Q,VISSER C,MADURO J A,et al. Broadband dye-sensitized upconversion of near-infrared light[J]. Nature Photonics, 2012,6(8):560-564. doi:10.1038/nphoton.2012.158. [百度学术]
ZHAO J B,JIN D Y,SCHARTNER E P,et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence[J]. Nature Nanotechnology, 2013,8(10):729-734. doi:10.1038/nnano.2013.171. [百度学术]
WU D M,GARCÍA-ETXARRI A,SALLEO A,et al. Plasmon-enhanced upconversion[J]. The Journal of Physical Chemistry Letters, 2014,5(22):4020-4031. doi:10.1021/jz5019042. [百度学术]
LIU Qian,FENG Wei,YANG Tianshe,et al. Upconversion luminescence imaging of cells and small animals[J]. Nature Protocols, 2013,8(10):2033-2044. doi:10.1038/nprot.2013.114. [百度学术]
YANG Yining,ZHANG Yong,SHEN Wei,et al. Semiconductor infrared up-conversion devices[J]. Progress in Quantum Electronics, 2011,35(4):77-108. doi:10.1016/j.pquantelec.2011.05.001. [百度学术]
XIE Xiaoji,LIU Xiaogang. Upconversion goes broadband[J]. Nature Materials, 2012,11(10):842-843. doi:10.1038/nmat3426. [百度学术]
VAN SARK W G,DE-WILD J,RATH J K,et al. Upconversion in solar cells[J]. Nanoscale Research Letters, 2013,8(1):81. doi: 10.1186/1556-276X-8-81. [百度学术]
PFEIFFER T,KUTAS M,HAASE B,et al. Terahertz detection by upconversion to the near-infrared using picosecond pulses[J]. Optics Express, 2020,28(20):29419-29429. doi:10.1364/OE.397839. [百度学术]
KHAN M J,CHEN J C,KAUSHIK S. Optical detection of terahertz using nonlinear parametric upconversion[J]. Optics Letters, 2008,33(23):2725-2727. doi:10.1364/OL.33.002725. [百度学术]
BARH A,PEDERSEN C,TIDEMAND-LICHTENBERG P. Ultra-broadband mid-wave-IR upconversion detection[J]. Optics Letters, 2017,42(8):1504. doi:10.1364/OL.42.001504. [百度学术]
ALBOTA M A,WONG F N C. Efficient single-photon counting at 155 µm by means of frequency upconversion[J]. Optics Letters, 2004,29(13):1449. doi:10.1364/OL.29.001449. [百度学术]
AHARON A,ROZBAN D,KLEIN A,et al. Detection and upconversion of three-dimensional MMW/THz images to the visible[J]. Photonics Research, 2016,4(6):306. doi:10.1364/PRJ.4.000306. [百度学术]
KOZINA M,FECHNER M,MARSIK P,et al. Terahertz-driven phonon upconversion in SrTiO3[J]. Nature Physics, 2019,15(4): 387-392. doi:10.1038/s41567-018-0408-1. [百度学术]
BAI Peng,ZHANG Yueheng,SHEN Wenzheng. Infrared single photon detector based on optical up-converter at 1 550 nm[J]. Scientific Reports, 2017,7(1):15341. doi:10.1038/s41598-017-15613-0. [百度学术]
DOWNES L A,MACKELLAR A R,WHITING D J,et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 2020,10(1):011027. doi:10.1103/PhysRevX.10.011027. [百度学术]
BAN D,HAN S,LU Z H,et al. Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector[J]. Applied Physics Letters, 2007,90(9):093108. doi:10.1063/1.2710003. [百度学术]
BAN D,LUO H M,LIU H C,et al. Midinfrared optical upconverter[J]. Applied Physics Letters, 2005,86(20):201103. doi:10.1063/1.1921330. [百度学术]
FU Zhili,GU Lin,GUO Xiaogang,et al. Frequency up-conversion photon-type terahertz imager[J]. Scientific Reports, 2016,6(1): 25383. doi:10.1038/srep25383. [百度学术]
ALLARD L B,LIU H C,BUCHANAN M,et al. Pixelless infrared imaging utilizing a p-type quantum well infrared photodetector integrated with a light emitting diode[J]. Applied Physics Letters, 1997,70(21):2784-2786. doi:10.1063/1.119058. [百度学术]
DUPONT E,BYLOOS M,GAO M,et al. Pixelless thermal imaging with integrated quantum-well infrared photodetector and light-emitting diode[J]. IEEE Photonics Technology Letters, 2002,14(2):182-184. doi:10.1109/68.980504. [百度学术]
LIU H C,ALLARD L B,BUCHANAN M,et al. Pixelless infrared imaging device[J]. Electronics Letters, 1997,33(5):379. doi: 10.1049/el:19970242. [百度学术]
DUPONT E,BYLOOS M,OOGARAH T,et al. Optimization of quantum-well infrared detectors integrated with light-emitting diodes[J]. Infrared Physics & Technology, 2005,47(1/2):132-143. doi:10.1016/j.infrared.2005.02.018. [百度学术]
SCHNEIDER H,LIU H C. Quantum well infrared photodetectors[M]. Berlin:Springer, 2006. doi:10.1007/978-3-540-36324-8. [百度学术]
BAI Peng,ZHANG Yueheng,WANG Tianmeng,et al. Broadband THz to NIR up-converter for photon-type THz imaging[J]. Nature Communications, 2019,10(1):3513. doi:10.1038/s41467-019-11465-6. [百度学术]
BAI Peng,ZHANG Yuhua,GUO Xiaogang,et al. Realization of the high-performance THz GaAs homojunction detector below the frequency of reststrahlen band[J]. Applied Physics Letters, 2018,113(24):241102. doi:10.1063/1.5061696. [百度学术]
BAI Peng,LI Xiaohong,YANG Ning,et al. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector[J]. Science Advances, 2022,8(21):eabn2031. doi:10.1126/sciadv.abn2031. [百度学术]
LAO Y F,PERERA A G U,LI L H,et al. Tunable hot-carrier photodetection beyond the bandgap spectral limit[J]. Nature Photonics, 2014,8(5):412-418. doi:10.1038/nphoton.2014.80. [百度学术]
KARPOV S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review[J]. Optical and Quantum Electronics, 2015,47(6):1293-1303. doi:10.1007/s11082-014-0042-9. [百度学术]
PIPREK J. Efficiency droop in nitride-based light-emitting diodes[J]. Physica Status Solidi(a), 2010,207(10):2217-2225. doi: 10.1002/pssa.201026149. [百度学术]
RYU H Y,KIM H S,SHIM J I. Rate equation analysis of efficiency droop in InGaN light-emitting diodes[J]. Applied Physics Letters, 2009,95(8):081114. doi:10.1063/1.3216578. [百度学术]
LI Xiaohong,PENG Bai,HUANG Siheng,et al. Bi-functional high-speed and ultrabroad bandwidth detector[J]. ACS Photonics, 2023,10(8):2816-2824. doi:10.1021/acsphotonics.3c00513. [百度学术]
PENG Bai,ZHANG Yueheng,WANG Tianmeng,et al. Cryogenic characteristics of GaAs-based near-infrared light emitting diodes[J]. Semiconductor Science and Technology, 2020,35(3):035021-1-10. doi:10.1088/1361-6641/ab6dbf. [百度学术]