摘要
太赫兹波具有良好的穿透性、低能性和宽带性,在高速空间通信、环境监测、外差探测、医学探测、无损检测和国防安全等领域具有重要的应用前景。波导传输技术和功能器件是太赫兹系统不可或缺的重要组成部分,太赫兹波导的性能决定了太赫兹系统的信号传输效率和集成度,引起人们的研究兴趣。近年来,太赫兹波导的发展取得了长足的进步,从普通的金属空心波导到金属线波导、介质光纤,再到最近的人工表面等离激元波导、石墨烯、铌酸锂等新型波导,它们展现出了各自的优势,令人振奋。该综述全面介绍了太赫兹波导领域的发展及研究近况,并对其未来应用进行了展望。
太赫兹(Teraherz,THz)波一般是指频率范围内的电磁波,相应的其波长处于之

图1 太赫兹波在电磁波谱中的位置
Fig.1 Position of the THz wave in the electromagnetic spectrum
目前,THz系统主要利用自由空间传播,这样损耗可以最小化。然而大部分功能器件都是以波导为基础的,故波导对器件系统的性能影响是非常大的,THz领域也不例外,因此波导问题是高效THz系统发展的关键。THz波传输性能主要由波导的插入损耗、材料吸收以及波导的色散关系决定,怎样充分地减少插入损耗、降低材料吸收损耗以及合理控制色散关系是THz波导发展的关键问题。法国巴黎天文台曾经测量了全THz波在空气中的传播损耗,其中氧气分子(O)主要吸收频段为,水分子(HO)主要吸收频段在之间,而二氧化碳(CO)主要吸收频段在远红外光区域。故可以知道大气中的水分子和氧分子将会极大影响THz波在自由空间和非封闭式波导中的传输距离,减少大气吸收率也是THz波导的一个重要指标。拥有低损耗和低色散特征的波导有几个好处,低损耗显然可以延长传输距离,低色散显然可以更好保持信号完整性。波导的主要用途是从一个点传输电磁波到另一个点,同时波导也被用作传感和成像探针。THz波导最大的优点是,用于操纵自由空间THz辐射的体光学可以被THz时域光谱学(Time Domain Spectroscopy,TDS)系统中的波导取代。这将为集成THz系统的进一步发展和片上THz系统创造新的机会,最终创造出先进的生物传感器。当考虑波导色散关系时,波导中电磁波的工作波长一般都小于自由空间的波长,故THz波导对加工工艺也提出了不低的要求,尤其处于微米级的中高频THz波段。
就THz波导来说,色散和损耗的问题一方面要归结到结构设计上,但选择合适的材料也很重要。虽然金属在微波频率下工作情况较好,但THz频率下欧姆损耗较大。聚合物和玻璃在红外和光学频率下运行良好,但它们在THz区域具有不可接受的频率相关吸收损耗。群速度色散是限制波导应用的另一个重要障碍,特别是在THz光谱和通信系统中,宽THz频谱的不同频率分量以不同的群速度传播,会导致脉冲形状失真。本文围绕THz波导的几个关键问题,按照结构特点对其研究进展和相关应用进行总结归纳。
根据Drude模型,THz频段金属的复介电常数可以表示
(1) |
式中:为复介电常数的实部;为虚部。有:
(2) |
(3) |
式中为等离子振荡频率。
THz中空型金属波导主要分为矩形波导和圆形波导。相比于可见光,由于金属在微波毫米波、THz等低频电磁波段的介电常数实部为负,虚部特别大,故THz波在金属,尤其是贵金属表面反射率非常高,中空型金属波导便利用全内反射机制来引导THz波。1999年,McGowan和Gallot小

图2 (a) 圆形金属波导传输模式场分布; (b) 矩形金属波导传输模式场分布; (c) 圆形波导三种工作模式的吸收系
Fig.2 (a) field distribution of transmission mode in the circular metal waveguide; (b) field distribution of transmission mode in the rectangular metal waveguide; (c) absorption coefficients of three modes of circular waveguid
2007年,郑州大学的陆东梅等

图3 (a) 金属镀层波导结构图; TMTE,TE在波导材料为(b)金、(c)镍和(d)铅时模式理论衰减常
Fig.3 (a) coating waveguide structure diagram; the mode theoretical attenuation constant of the TM,TE,TE when the waveguide material is (b) gold (c) nickel (d) lea
Harrington等
Zhang等
THz中空型金属波导经过近20年的发展,可以看出,其损耗从最初的提升至,性能提升非常明显,对波导的工作模式也进行了深入的研究。
2001年,Mendis等

图4 (a) 基于Cu的平行平板波
Fig.4 (a) Cu-based parallel slab waveguid
(c) effect of adjusting THz wave with different pump power
2007年,Mendis又构建了一种介质填充的平行平板波导(Dielectric-filled Metallic Parallel-plate Waveguides,DF-PPWGs
2008年,Cooke等
可以看出,THz平行平板波导的群速色散很小,然而损耗与THz中空型金属波导相比无明显优势。同时也可以发现人们已经通过在THz平行平板波导填充介质,实现了对THz波的调制,不再单纯地研究其导波性质。
THz波传输技术领域内,金属丝波导是一种重要的波导,兼具低损耗、低色散等优点。2004年,Wang等

图5 (a) 裸金属线波导实验装
Fig.5 (a) experiment device of bare metal wire waveguid
(d) THz-sommerfeld波在单根铜线上传播的实验; (e) 铜线的THz波径向场分布; (f) 铜线弯曲h时THz脉冲衰减结
2005年,Tae-In Jeon等
He等
THz金属丝波导结构极其简单,同时灵活度高,便于弯曲,兼具低损耗、低色散的优点。不过由于金属丝波导是一种裸露结构,故其抗干扰性并不太好,需要进行额外设计来进行弥补。
THz光纤通常由电介质材料制作,尤其是聚合物材料,因为它们在THz波段吸收损耗较小,色散系数较低。例如聚四氟乙烯(PTFE,或称Teflon)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯(PE)、聚丙烯(PP)和环烯烃共聚物(COC)等。
2000年,Grischkowsky等
2006年,Chen等

图6 聚乙烯光纤传输THz波实验装
Fig.6 Experimental device for transmitting THz wave by polyethylene optical fibe
介质管波导是由介质管及管中间的空气芯组成,结构简单,同时传输损耗也低,其工作机制为反共振导向机制。当工作在反共振频率时,THz波会被介质管内壁全反射,从而在内部空气芯层中传输。
2009年,Lai等

图7 (a) PTFE-THz介质管波导实验装置; (b) PTFE-THz实验测得传输损
Fig.7 (a) experimental device for PTFE-THz dielectric tube waveguide; (b) transmission loss measured by PTFE-THz experimen
2010年,Lu等
2015年,Bao等
THz介质管波导中,PTFE表现极其出众,其耦合效率可达,最低损耗远小于其他材料的介质管波导,也远优于其他类型THz波导,实际应用前景广阔。
1987年,E Yablonovitc

图8 三类光子晶体结构示意图
Fig.8 Schematic diagram of the 3 types of PCs structures
(4) |
(5) |
根据传输方程,得到的光子晶体的色散关系见
(6) |

图9 (a) 光子晶体色散关系; (b) 光子晶体波导
Fig.9 (a) dispersion relationship of PCs; (b) waveguide mode of PC
类比紧束缚近似,将波导模的本征模用沿着轴平行的直线方向上每个独立谐振器的高Q模的线性组合表示:
(7) |
将模函数
就实际加工工艺来说,一维光子晶体制备较简单,但由于其周期结构是一维的,无法构造相对复杂的缺陷模式,故其可实现的功能也不太多;三维光子晶体可构造的缺陷模式十分丰富,则可实现功能也很多,但其制备工艺相对复杂,成本较高;而二维光子晶体兼具二者优点,故实际研究主要集中在二维光子晶体上。
2006年,Zhang等

图10 (a) 硅基二维光子晶体波
Fig.10 (a) silicon-based two-dimensional PCs waveguid
(d) THz two-dimensional PCs slab waveguide with low dielectric constan
and frequency in Figure(d
2009年,Ponseca等
2012年,Kitagawa等
2015年,K Tsuruda等
2021年,司阳等
THz光子晶体波导由于其在大角度导波时损耗极低,内部光束有着极高的Q值,故在集成光路方面有着天然的优势。由于半导体工艺在THz频段的适配性,以及考虑到集成光路和集成电路的因素,目前大部分THz光子晶体波导是基于半导体材料研发
光子晶体光纤根据导光机理不同,分为全内反射型(Total Internal Reflection,TIR)和光子带隙型(Photonic Bandgap,PBG)。
TIR型的光子晶体光纤结构一般见

图11 (a) TIR型光子晶体光纤; (b) PBG型光子晶体光
Fig.11 (a) TIR type PCs fibers; (b) PBG type PCs fiber
THz频段的光子晶体光纤直到2004年才出
关于光子晶体光纤工作模式的研究也引起了很大的关注。2012年,Chen等
THz光子晶体光纤和介质光纤的最佳材料一样,同为PTFE,并且在光纤中引入光子晶体结构后,其色散及损耗特性又提升了一个台阶。关于THz光子晶体光纤的其他研究也是非常多的,例如THz超宽带光子晶体光
表面等离激元(Surface Plasmon Polaritons,SPPs)的研究始于Wood等人,他
(8) |
式中:为SPP沿传播方向的波矢;,为角频率,为自由空间光速;和分别为金属和介质的介电常数。一般金属的介电特性是用Drude模型描述的,即
(9) |
式中:为金属的等离子频率,为电子电荷,为电子质量,为金属电子密度,为真空中介电常数;为弛豫频率,表示电子运动引起的散射损耗,一般为常数。根据

图12 (a) TM模在金属与介质交界面示意
Fig.12 (a) schematic diagram of TM mode at the interface between metal and mediu
金属的等离子频率一般在紫外光波段,在THz波段具有很高的介电常数。金属尽管在THz波段也可以实现表面等离激元(被称之为Sommerfeld-Zenneck

图13 (a) 亚波长方孔阵列激发SSPPs的示意图; (b) SSPPs色散曲
Fig.13 (a) schematic diagram of subwavelength square hole array exciting SSPPs; (b) dispersion curve of SSPP
(d) 凹槽型THz-SSPPs样品; (e) 数值模拟的THz-SSPPs场分布
(d) grooved THz-SSPPs sample; (e) field distribution diagram of THz-SSPPs by numerical simulatio
2008年,Fernandez-Dominguez等

图14 (a) 周期型金属线SSPPs波导; (b) 色散曲线;(c) 波导型SSPPs在f=时的场分布; (d) 探针型SSPPs在f=时的场分
Fig.14 (a) periodic metal wire SSPPs waveguide; (b) dispersion curve of figure(a); (c) field distribution of waveguide type SSPPs at f=;
(d) field distribution of probe type SSPPs at f=[

图15 (a) 亚波长光栅波
Fig.15 (a) subwavelength grating waveguid
到了2013年,Shen和Cui等

图16 (a) 超薄金属光栅及色散曲
Fig.16 (a) ultra-thin metal grating and dispersion curv
(d) simulation results of the electric field distribution corresponding to the sampl
2016年,Y Liu等

图17 (a) 超薄金属带槽型SSPPs波导结构图; (b) 色散关系; (c) 基于图(a)SSPPs波导的环形谐振腔; (d) 图(c)中环形谐振腔对应S参
Fig.17 (a) structure diagram of ultra-thin metal grooved SSPPs waveguide; (b) dispersion relation; (c) ring resonator based on the SSPPs waveguide in Fig.(a); (d) corresponding S-parameters of the ring resonator in Fig.(c
同年,Y Liu等

图18 (a) 基于在双波纹金属波导上有效产生SSPPs模式的THz电子
Fig.18 (a) THz electron source based on effective generation of SSPPs mode on double corrugated metal waveguid
2018年,Guo等

图19 (a) THz共型SSPPs波导; (b) 单元结构尺寸图; (c) L变化时S参数; (d) 周期N变化时S参
Fig.19 (a) THz coplanar SSPPs waveguide; (b) schematic diagram of unit structure size; (c) S parameter when L changes;
(d) S parameter when the period N change
总而言之,目前关于SSPPs的研究越来越多,各种基于SSPPs的器件也被研发出来,但大都局限于微波波段。关于THz频段的SSPPs波导的研究虽然并不算少,但受困于信号源、探测器等多方面现实原因,只能局限于理论及仿真工作,实验方面的工作十分稀少,几乎是一个尚未开发的方向,依然有很大潜力。
石墨烯(Graphene)作为最具代表性的新型二维材料,它在力、热、光、电等方面都具有十分优异的性能,在生物、医药、材料等方向具有很好的应用前景,近年来备受关注,并且得到了持续深入的研
石墨烯在微观上是由碳原子以sp杂化的方式组成的六角蜂窝形晶格,见

图20 (a) 石墨烯微观结构; (b) 单层石墨烯能带结构及(c) 局部放大图
Fig.20 (a) microstructure of graphene; (b) band structure of single-layer graphene and (c) partial enlarged view
石墨烯的光吸收分为两类:带间吸收和带内吸

图21 (a) 石墨烯带间吸收; (b) 石墨烯带内吸
Fig.21 (a) graphene interband absorption; (b) graphene intraband absorptio
2008年,Hanso

图22 (a) GPPWG模型; (b) 从上到下分别对应单层石墨烯、金(厚10 nm)、10层石墨烯、金(厚100 nm)的PPWG衰减常数随频率变化
Fig.22 (a) GPPWG model; (b) from top to bottom, the attenuation constants of PPWG corresponding to single-layer graphene, gold(10 nm thick), 10-layer graphene, and gold(100 nm thick) vary with frequenc
2011年,Vakil和Enghet

图23 (a) 石墨烯SPP直波导; (b) 石墨烯SPP Y形波
Fig.23 (a) graphene SPP straight waveguide; (b) graphene SPP Y-waveguide intraband absorptio
2012年,Yuan等

图24 (a) 半导体-石墨烯圆柱结构的THz波
Fig.24 (a) THz waveguide based on semiconductor-graphene cylindrical structur
2014年,Wang等
2018年,Chen等
相比于传统材料,石墨烯在可加工厚度更薄的情况下,却表现出了更强的模式约束和更长的传输距离等优越特性。可以看出,石墨烯在THz领域内有着广阔的前景。目前,虽然基于新型二维材料的研究主要集中在金属薄膜和石墨烯两个方向上,但对于其他新型二维材料,例如WSe[
本文对THz波导的发展进行了论述,包括波导类型、常用材料等。THz波导类型主要包括传统的中空型波导、平行平板波导、金属丝波导、介质光纤和介质管波导,在所调研的文献中各类传统波导对应的最低损耗分别为,,,,,显然,随着研究的进行,THz波导损耗是在不断减小的。之后甚至在70 km长的THz光子晶体光纤上实现了模分复用技术,同时由于光子晶体自身的低群速特性,实现了对THz波的低色散传输。新型THz光子晶体包括光子晶体波导和光子晶体光纤两部分,THz光子晶体波导是对光子晶体周期结构的横向应用,而THz光子晶体光纤是对其的纵向应用,自从THz光子晶体波导诞生以后,针对THz波导的研究重心不再仅仅是降低损耗和色散,同时也要考虑集成光路方面的问题。自然而然地,集成度高的波导类型,如SSPPs波导和新型二维材料波导便被引入到THz波导领域,以构建THz亚波长器件。各种波导均有各自的优缺点,应用时需根据实际情况进行考虑。
总体来看,THz波导常用材料包括金属、聚合物以及新型二维材料等。但随着材料和加工工艺的发展,THz波导的研究由单一材料走向复合材料,由高维降至低维,为THz波从自由空间走向集成系统不断夯实基础。但正如本文前面所说,对于波导的研究,插入损耗、材料吸收以及波导色散关系这三个问题是必须考虑的,它们决定了导波的传播距离和损耗。尽管有着诸多的困难,但作为THz系统的基础结构,大量的研究一直在推动THz波导的发展,并促进其在各个领域的应用。
参考文献
FERGUSON B,ZHANG X C. Materials for terahertz science and technology[J]. Nature Materials, 2002,1(1):26-33. [百度学术]
LIU C,WANG C,CAO J C. Multipath propagation channel modeling and capacity analysis for terahertz indoor communications[J]. Journal of Optical Technology, 2017,84(1):53-61. [百度学术]
WANG C,WANG F,CAO J C. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2014,24(3):033109. [百度学术]
CAO J C. Semiconductor terahertz sources,detectors and applications[M]. Beijing:Science Press, 2012. [百度学术]
FEDERICI J F,SCHULKIN B,Huang F,et al. THz imaging and sensing for security applications-explosives,weapons and drugs[J]. Semiconductor Science and Technology, 2005,20(7):S266-S280. [百度学术]
张真真,黎华,曹俊诚. 高速太赫兹探测器[J]. 物理学报, 2018,67(9):090702-1 [百度学术]
-090702-12. (ZHANG Zhenzhen,LI Hua,CAO Juncheng. Ultrafast terahertz detectors[J]. Acta Physica Sinica, 2018,67(9):090702-1-090702-12.) [百度学术]
ZIMDARS D,VALDMANIS J A,WHITE J S,et al. Technology and applications of terahertz imaging nondestructive examination:inspection of space shuttle sprayed on foam insulation[J]. AIP Conference Proceedings, 2005,760(1):570-577. [百度学术]
HU B B,NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995,20(16):1716-1718. [百度学术]
FITCH M J,OSIANDER R. Terahertz waves for communications and sensing[J]. Johns Hopkins APL Technical Digest, 2004,25(4):348-355. [百度学术]
KLEINE-OSTMANN T,NAGATSUMA T. A review on terahertz communications research[J]. Journal of Infrared Millimeter & Terahertz Waves, 2011,32(2):143-171. [百度学术]
姚建铨,迟楠,杨鹏飞,等. 太赫兹通信技术的研究与展望[J]. 中国激光, 2009,36(9):7-27. [百度学术]
YAO Jianquan,CHI Nan,YANG Pengfei,et al. Study and outlook of terahertz communication technology[J]. China Journal Of Lasers, 2009,36(9):7-27. [百度学术]
ORDAL M A,LONG L L,BELL R J,et al. Optical properties of the metals Al,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983,22(7):1099-1119. [百度学术]
MARK A O,BELL R J,ALEXANDER R W,et al. Optical properties of fourteen metals in the infrared and far infrared:Al,Co,Cu,Au,Fe,Pb,Mo,Ni,Pd,Pt,Ag,Ti,V, and W[J]. Applied Optics, 1985,24(24):4493-4499. [百度学术]
MCGOWAN R W,GALLOT G,GRISCHKOWSKY D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides[J]. Optics Letters, 1999,24(20):1431-1433. [百度学术]
GALLOT G,JAMISON S P,MCGOWAN R W,et al. Terahertz waveguides[J]. OSA publishing JOSA B, 2000,17(5):851-863. [百度学术]
LU D M,YAO J Q,ZHENG Y,et al. Transmission characteristics of hollow metallic film-coated circular waveguide for THz radiation[J]. Laser & Infrared, 2007,37(12):1287-1289. [百度学术]
HARRINGTON J A,PEDERSEN P,BOWDEN B F,et al. Hollow cucoated plastic waveguides for the delivery of THz radiation[C]// Terahertz and Gigahertz Electronics and Photonics IV. [S.l.]:SPIE 2005,5727:143-150. [百度学术]
张学文,谭智勇,陈可旺,等. 介质金属膜波导在G波段和4.3 THz的传输特性[J]. 红外与毫米波学报, 2019,38(2):215-222. [百度学术]
ZHANG Xuewen,TAN Zhiyong,CHEN Kewang,et al. Transmission characteristics of dielectric-coated metallic waveguides in G band and 4.3 THz[J]. Journal of Infrared and Millimeter Waves, 2019,38(2):215-222. [百度学术]
MENDIS R,GRISCHKOWSKY D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Optics Letters, 2001,26(11):846-848. [百度学术]
MENDIS R,GRISCHKOWSKY D. THz interconnect with low-loss and low-group velocity dispersion[J]. IEEE Microwave and Wireless Components Letters, 2001,11(11):444-446. [百度学术]
MENDIS R. THz transmission characteristics of dielectric-filled parallel-plate waveguides[J]. Journal of Applied Physics, 2007,101(8):083115. [百度学术]
COOKE D G,JEPSEN P U. Optical modulation of terahertz pulses in a parallel plate waveguide[J]. Optics Express, 2008,16(19):15123-15129. [百度学术]
WANG K L,MITTLEMAN D M. Metal wires for terahertz wave guiding[J]. Nature, 2004,432(7015):376-379. [百度学术]
WANG K L,MITTLEMAN D M. Guided propagation of terahertz pulses on metal wires[J]. JOSA B, 2005,22(9):2001-2008. [百度学术]
JEON T,ZHANG J Q,GRISCHKOWSKY D. THz sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 2005,86(16):161904. [百度学术]
HE X Y,CAO J C,FENG S L. Simulation of the propagation property of metal wires terahertz waveguides[J]. Chinese Physics Letters, 2006,23(8):2066-2069. [百度学术]
JAMISON S P,MCGOWAN W,GRISCHKOWSKY D. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers[J]. Applied Physics Letters, 2000,76(15):1987-1989. [百度学术]
CHEN L J,CHEN H W,KAO T F,et al. Low-loss subwavelength plastic fiber for terahertz waveguiding[J]. Optics Letters, 2006,31(3):308-310. [百度学术]
LAI C H,HSUEH Y C,CHEN H W,et al. Low-index terahertz pipe waveguides[J]. Optics Letters, 2009,34(21):3457-3459. [百度学术]
LU J T,HSUEH Y C,HUANG Y R,et al. Bending loss of terahertz pipe waveguides[J]. Optics Express, 2010,18(25):26332-26338. [百度学术]
BAO H L,NIELSEN K,BANG O,et al. Dielectric tube waveguides with absorptive cladding for broadband,low-dispersion and low loss THz guiding[J]. Scientific Reports, 2015,5(1):1-9. [百度学术]
YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987,58(20):2059-2062. [百度学术]
SAJEEV J. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987,58(23):2486-2489. [百度学术]
YARIV A,XU Y,LEE R K,et al. Coupled-resonator optical waveguide:a proposal and analysis[J]. Optics Letters, 1999,24(11):711-713. [百度学术]
黄昆,韩汝琦. 固体物理学[M]. 北京:科学出版社, 1988. [百度学术]
HUANG Kun,HAN Ruqi. Solid-state physics[M]. Beijing:Science Press, 1988. [百度学术]
ZHANG Y,LI Z J,LI B J. Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves[J]. Optics Express, 2006,14(7):2679-2689. [百度学术]
PONSECA Carlito S,ESTACIO Elmer,POBRE Romeric,et al. Transmission characteristics of lens-duct and photonic crystal waveguides in the terahertz region[J]. JOSA B, 2009,26(9):A95-A100. [百度学术]
KITAGAWA J,KODAMA M,KADOYA Y. Design of two-dimensional low-dielectric photonic crystal and its terahertz waveguide application[J]. Japanese Journal of Applied Physics, 2012,51(6R):062201. [百度学术]
TSURUDA K,FUJITA M,NAGATSUMA T. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab[J]. Optics Express, 2015,23(25):31977-31990. [百度学术]
司阳,陈希,陈鹤鸣. 基于二维光子晶体高Q值微波带阻滤波器[J]. 太赫兹科学与电子信息学报, 2021,19(1):96-100. [百度学术]
SI Yang,CHEN Xi,CHEN Heming. High Q-factor microwave bandstop filter based on two-dimensional photonic crystal[J]. Journal of Terahertz Science and Electronic Information Technology, 2021,19(1):96-100. [百度学术]
CHEN T,SUN J Q,LI L,et al. Design of a photonic crystal waveguide for terahertz-wave difference-frequency generation[J]. IEEE Photonics Technology Letters, 2012,24(11):921-923. [百度学术]
KNIGHT J C,BIRKS T A,ATKIN D M,et al. Pure silica single-mode fibre with hexagonal photonic crystal cladding[C]// Optical Fiber Communication Conference. San Jose,USA:[s.n.], 1996:339. [百度学术]
CREGAN R F,MANGAN B J,KNIGHT J C,et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999,285(5433):1537-1539. [百度学术]
GOTO M,QUEMA A,TAKAHASHI H,et al. Teflon photonic crystal fiber as terahertz waveguide[J]. Japanese Journal of Applied Physics, 2004,43(2B):L317-L319. [百度学术]
GOTO M,QUEMA A,TAKAHASHI H,et al. Teflon photonic crystal fiber as polarization-preserving waveguide in THz region[C]// International Conference on Ultra-fast Phenomena. Berlin:Springer, 2005:702-704. [百度学术]
LI S P,LIU H J,HUANG N,et al. Broadband high birefringence and low dispersion terahertz photonic crystal fiber[J]. Journal of Optics, 2014,16(10):105102. [百度学术]
MEDJOURI A,SIMOHAMED L M,ZIANE O,et al. Investigation of high birefringence and chromatic dispersion management in photonic crystal fibre with square air holes[J]. Optik, 2015,126(20):2269-2274. [百度学术]
BHATTACHARYA R,KONAR S. Extremely large birefringence and shifting of zero dispersion wavelength of photonic crystal fibers[J]. Optics & Laser Technology, 2012,44(7):2210-2216. [百度学术]
AGRAWAL A,KEJALAKSHMY N,UTHMAN M,et al. Ultra low bending loss equiangular spiral photonic crystal fibers in the terahertz regime[J]. AIP Advances, 2012,2(2):022140. [百度学术]
CHEN H B,WANG H,HOU H L,et al. A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region[J]. Optics Communications, 2012,285(18):3726-3729. [百度学术]
HAN J W,ZHANG J,ZHAO Y L,et al. Numerical demonstration of mode-division multiplexing transmission over dual-mode photonic crystal fiber enabled by fiber couplers[J]. Optik, 2013,124(12):1287-1289. [百度学术]
ZHANG Z G,TANG J,LUO D,et al. Research on terahertz photonic crystal fiber characteristics with high birefringence[J]. Optik, 2014,125(1):154-158. [百度学术]
YANG J,YANG B,WANG Z,et al. Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers[J]. Optics Communications, 2015,343:150-156. [百度学术]
MISRA M,PAN Y,WILLIAMS C R,et al. Characterization of a hollow core fibre-coupled near field terahertz probe[J]. Journal of Applied Physics, 2013,113(19):193104. [百度学术]
ISLAM S,ISLAM M R,FAISAL M,et al.Extremely low-loss,dispersion flattened porouscore photonic crystal fiber for terahertz regime[J]. Optical Engineering, 2016,55(7):076117. [百度学术]
WU Z Q,ZHOU X Y,SHI Z H,et al. Proposal for high-birefringent terahertz photonic crystal fiber with all circle air holes[J]. Optical Engineering, 2016,55(3):037105. [百度学术]
WOOD R W. Xlii on a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1902,4(21):396-402. [百度学术]
FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces(sommerfeld's waves)[J]. JOSA, 1941,31(3):213-222. [百度学术]
PINES D. Collective energy losses in solids[J]. Reviews of Modern Physics, 1956,28(3):184. [百度学术]
STERN E A,FERRELL R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review, 1960,120(1):130. [百度学术]
KRETSCHMANN E,RAETHER H. Radiative decay of non-radiative surface plasmons excited by light[J]. Zeitschrift Für Naturforschung, 1968,23A(12):2135-2136. [百度学术]
OTTO A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift Für Physik A Hadrons and Nuclei, 1968,216(4):398-410. [百度学术]
BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003,424(6950):824-830. [百度学术]
LIU Y M,ZENTGRAF T,BARTAL G,et al. Transformational plasmonoptics[J]. Nano Letters, 2010,10(6):1991-1997. [百度学术]
PITARKE J M,SILKIN V M,CHULKOV E V,et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 2006,70(1):1-87. [百度学术]
SHCHEGROV A V,NOVIKOV I V,MARADUDIN A A. Scattering of surface plasmon polaritons by a circularly symmetric surface defect[J]. Physical Review Letters, 1997,78(22):4269-4272. [百度学术]
JEON T,ZHANG J Q,GRISCHKOWSKY D. THz sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 2005,86(16):161904. [百度学术]
JEON T,GRISCHKOWSKY D. THz zenneck surface wave(THz surface plasmon) propagation on a metal sheet[J]. Applied Physics Letters, 2006,88(6):061113. [百度学术]
PENDRY J B,MARTIN-MORENO L,GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004,305(5685):847-848. [百度学术]
WILLIAMS C R,ANDREWS S R,MAIER S A,et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2008,2(3):175-179. [百度学术]
FERNANDEZ-DOMINGUEZ A I,MARTIN-MOREN L O,GARCIA-VIDAL F J,et al. Spoof surface plasmon polariton modes propagating along periodically corrugated wires[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008,14(6):1515-1521. [百度学术]
FERNÁNDEZ-DOMÍNGUEZ A I,WILLIAMS C R,GARCÍA-VIDAL J,et al. Terahertz surface plasmon polaritons on a helically grooved wire[J]. Applied Physics Letters, 2008,93(14):141109. [百度学术]
ZHANG J,CAI L K,BAI W L,et al. Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide[J]. Journal of Applied Physics, 2009,106(10):103715. [百度学术]
GAO Z,ZHANG X F,SHEN L F. Wedge mode of spoof surface plasmon polaritons at terahertz frequencies[J]. Journal of Applied Physics, 2010,108(11):113104. [百度学术]
SHEN X P,CUI T J,MARTIN-CANO D,et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences, 2013,110(1):40-45. [百度学术]
XU J J,ZHANG H C,ZHANG Q,et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes[J]. Applied Physics Letters, 2015,106(2):021102. [百度学术]
GAO X,ZHOU L,LIAO Z,et al. An ultrawideband surface plasmonic filter in microwave frequency[J]. Applied Physics Letters, 2014,104(19):191603. [百度学术]
ZHANG H C,FAN Y F,GUO J,et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016,3(1):139-146. [百度学术]
LIU Y,YAN J,SHAO Y,et al. Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency[J]. Applied Optics, 2016,55(7):1720-1724. [百度学术]
LIU Y Q,DU C H,LIU P K. Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide[J]. IEEE Transactions on Plasma Science, 2016,44(12):3288-3294. [百度学术]
ISLAM M,CHOWDHURY D R,AHMAD A,et al. Terahertz plasmonic waveguide based thin film sensor[J]. Journal of Lightwave Technology, 2017,35(23):5215-5221. [百度学术]
ZHANG Y,XU Y H,TIAN C X,et al. Terahertz spoof surface-plasmonpolariton subwavelength waveguide[J]. Photonics Research, 2018,6(1):18-23. [百度学术]
GUO Y J,KAI D X,TANG X H. Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters[J]. Optics Express, 2018,26(8):10589-10598. [百度学术]
JAISWAL R K,PANDIT N,PATHAK N P. Spoof surface plasmon polaritons based reconfigurable band-pass filter[J]. IEEE Photonics Technology Letters, 2018,31(3):218-221. [百度学术]
XU K D,ZHANG F Y,GUO Y J,et al. Spoof surface plasmon polaritons based on balanced coplanar stripline waveguides[J]. IEEE Photonics Technology Letters, 2019,32(1):55-58. [百度学术]
NAIR R R,BLAKE P,GRIGORENKO A N,et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008,320(5881):1308. [百度学术]
MAK K F,SFEIR M Y,WU Y,et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008,101(19):196405. [百度学术]
NETO A H C,GUINEA F,PERES N M R,et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009,81:1-55. [百度学术]
BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011,10(8):569-581. [百度学术]
BALANDIN A A,GHOSH S,BAO W Z,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008,8(3):902-907. [百度学术]
BOLOTIN K I,SIKES K J,JIANG Z F,et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008,146(9-10):351-355. [百度学术]
KOESTER S J,LI M. Waveguide-coupled graphene optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013,20(1):84-94. [百度学术]
HANSON G W. Quasi-transverse electromagnetic modes supported by a graphene parallelplate waveguide[J]. Journal of Applied Physics, 2008,104(8):084314. [百度学术]
VAKIL A,ENGHETA N. Transformation optics using graphene[J]. Science, 2011,332(6035):1291-1294. [百度学术]
YUAN Y Z,YAO J Q,XU W. Terahertz photonic states in semiconductor-graphene cylinder structures[J]. Optics Letters, 2012,37(5):960-962. [百度学术]
WANG J,LU W B,LI X B,et al. Graphene plasmon guided along a nanoribbon coupled with a nanoring[J]. Journal of Physics D:Applied Physics, 2014,47(13):135106. [百度学术]
CHEN T,WANG L L,CHEN L Q,et al. Tunable terahertz wave difference frequency generation in a graphene/algaas surface plasmon waveguide[J]. Photonics Research, 2018,6(3):186-192. [百度学术]
HE X Q,NING T G,PEI L,et al. Tunable hybridization of graphene plasmons and dielectric modes for highly confined light transmit at terahertz wavelength[J]. Optics Express, 2019,27(5):5961-5972. [百度学术]
ZHENG K,YUAN Y F,ZHAO L T,et al. Ultracompact, low-loss terahertz waveguide based on graphene plasmonic technology[J]. 2D Materials, 2019,7(1):015016. [百度学术]
SI K Y,HUANG Y Y,ZHAO Q Y,et al. Terahertz surface emission from layered semiconductor wse2[J]. Applied Surface Science, 2018,448(1):416-423. [百度学术]
XU S J,YANG J,JIANG H C,et al. Transient photoconductivity and free carrier dynamics in a monolayer ws2 probed by time resolved terahertz spectroscopy[J]. Nanotechnology, 2019,30(26):265706. [百度学术]
付亚州,谭智勇,王长,等. 基于单层二硫化钨光控太赫兹调制器的研究[J]. 红外与毫米波学报, 2019,38(5):655-661. [百度学术]
FU Yazhou,TAN Zhiyong,WANG Chang,et al. Research on optical controlled terahertz modulator based on monolayer tungsten disulfide[J]. Journal of Infrared and Millimeter Waves, 2019,38(5):655-661. [百度学术]
ZHONG Y J,HUANG Y,ZHONG S C,et al. Tunable terahertz broadband absorber based on mos2 ring-cross array structure[J]. Optical Materials, 2021,114:110996. [百度学术]
LU D Y,LI W,ZHOU H,et al. Black phosphorus/waveguide terahertz plasmonic structure for ultrasensitive tunable gas sensing[J]. Photonics and Nanostructures-Fundamentals and Applications, 2021,46(1):100946. [百度学术]