摘要
为更好地设计基于不同材料、不同制作工艺文物的最佳保护方案,文物保护科技人员首先需要选用最有效的无损检测方法对文物进行全面检测。太赫兹波具有光子能量低、对非金属和非极性物质有较强穿透性、可同时获得脉冲电场振幅和相位信息、较好的抗干扰能力等独特性质,使其在诸多无损检测方法中脱颖而出。本文系统综述了太赫兹技术在文物无损检测应用中的最新研究进展;阐述了不同类型文物材料的太赫兹光谱特征、太赫兹成像检测技术原理和特点;指出了太赫兹无损检测技术对不同类型文物进行无损检测的技术关键点,列举了太赫兹技术在文物科学领域最成功和最具代表性的应用实例。最后展望了太赫兹无损检测技术在文物保护领域的发展趋势。
文物领域的无损检测有其特定的含义,泛指一切不给所测文物带来任何宏观物理变化和潜在危害的分析检测技术。文物保护科学家根据电磁波谱各个频段的优势和检测需求,几乎应用了所有频
为进一步推动THz技术在文物检测领域的研究,特别是推动国内相关研究的发展,本文梳理总结了THz技术在文物检测应用中的主要工作和重要进展,介绍了利用THz技术对不同类型文物材料的光谱和成像检测方法,希望吸引更多同仁投入到新型THz技术检测文物的研究中,从而助力我国THz技术的发展。
THz频率范围的光谱研究已经进行了几十年,为通信、生物和医学、无损检测、国土安全、食品和农业产品质量监测、全球环境监控、文物保护等领域做出了巨大贡
大多数光谱技术都有公开或商业可用的数据库,为艺术、建筑和考古材料的研究提供标准和比对光谱数据,如红外和拉曼数据库(http://irug.org)。尽管目前还没有商业或实用的THz谱库,但日本的国家信息通信技术研究院建立了文物材料的THz光谱数据库(http://thzdb.org),并与理化研究所的纯化学物质数据库进行了合
在已报道的各种文物材料的THz光谱研究中,对壁画、版画、帆布画等绘画类艺术品相关材料的研究成果较多:
1) 利用THz光谱可以区别不同粒径的同种颜料。如

图1 颜料颗粒对太赫兹光谱的影响
Fig.1 Influence of pigment particle size on THz spectra
(a) change of colours by varying particle size, and an example (b) spectra for azurite obtained using pelletised samples that
;in the masterpiece "Irises at Yatsuhashi" were observed via THz-TD
2) 利用THz光谱也可以区分同一种颜色的不同颜料。

图2 白色颜料和混合物的光谱
Fig.2 Spectra of white pigments and an example of a mixture
3) 利用THz光谱可以识别不同矿物颜料。

图3 常用矿物颜料的太赫兹光谱
Fig. 3 Terahertz spectra of common mineral pigments
4) 利用THz光谱可以识别不同有机颜料。

图4 天然染料和合成染料的太赫兹光谱
Fig.4 Terahertz spectra of natural dyes and artificial dyes
(a) natural dyes derived from insects and squid (b) natural dyes derived from plants (c) artificial dyes
5) 利用THz光谱可以识别各种艺术品的粘合剂。一些研究小组对各种粘合剂进行了THz光谱无损分析,以确定这些粘合剂在THz区域是否会出现特征峰。然而如

图5 粘合剂的太赫兹光谱
Fig. 5 Terahertz spectra of binders
总之,由上述分析可见,利用THz光谱可以有效识别和区分绘画类文物中所用的相关材料。
与绘画类材料的众多研究报告相比,基于其他材料文物的THz光谱研究较少,通过文献整理,主要有以下几种材料:
1) 基于石质文物THz光谱可用来评价石质文物病害的劣化情况。

图6 图(a)~(d)为从圆形浮雕板不同位置(a~d)反射的太赫兹脉冲,图上标记了与每个测量值相对应的位置;(e) 表面2.3~3.4 mm间的点(a~c)下内部空气狭缝所产生的回波位于35~45 ps间,d点的测量表明石头是坚固的,在该位置没有内部结构,虚线大致划定了损坏区域;(f) c点处测量过程
Fig. 6 Panels(a~d) are the reflected terahertz pulses from various locations on the medallion, the positions that correspond to each measurement are marked on panel; (e) it is easy to see that the area where points (a~c) lay presents an internal air gap that generates an echo 35 ps to 45 ps from the surface, which corresponds to 2.3 mm to 3.4 mm from the surface. The measurement at point (d) shows that the stone is solid and has no internal structure at that position, a dashed line approximately delimits the damaged area; (f) photograph of the measurement process at position (c), the measurement point is indicated

图7 云冈石窟风化砂岩样品的太赫兹光谱
Fig.7 Terahertz spectra of the weathered sandstone samples in Yungang Grottoes
(a) the transmission spectra of the samples (b) the details of the transmission spectra at 0.7~1.2 THz

图8 SVM-HDPM在空鼓检测应用中的流程示意
Fig.8 The diagram of detailed process for predicting hollowing deterioration thickness application of the SVM-HDP
2) 基于木制画像文物的THz吸收光谱可有效检测木制画像的内部结构和隐藏缺陷。Skryl组对一幅19世纪的俄罗斯木质圣像画隐藏缺陷进行了检

图9 (a)白杨木样品照片;(b)木节和木材的吸收系数(实线)和折射率(点线
Fig.9 (a) photograph of the aspen sample; (b) absorption coefficients (solid) and refractive indices(dotted) of the knot and woo
3) 基于纸质文物的THz透射、吸收及折射率光谱可以对纸质文献进行检测和鉴别。Bardon系统研究了历史文献上的各种墨

图10 从颜料与聚乙烯质量比为10%(灯黑:1%)的400mg颗粒中以透射模式测量的赭黄、象牙黑、棕褐色和灯黑颜料的太赫兹吸收光谱(a)、折射率(b)和吸收系数(c
Fig.10 Terahertz absorbance spectra, refractive indices and absorption coefficients for bistre, ivory black, sepia and lamp black pigments, measured in transmission from 400 mg pellets with a mass ratio of pigment to polyethylene of 10% (lamp black: 1%
此外,THz光谱检测技术也逐渐用于文物防伪领域,如基于THz波对红木良好的穿透性及指纹特性,王远等分别对巴里黄檀、奥氏黄檀、大叶紫檀、小叶紫檀、交趾黄檀等5种红木,实现了准确率高达94%和96%的分类识
THz技术在诊断医学、安全、材料表征、无损评价、质量控制等领域的基础和应用研究都取得了巨大的进展,这源于它独一无二的特性,如介质穿透性、化学特异性、相较微波的高空间分辨力及对生物“近似无辐射”的辐射安全
尽管THz波在各领域的应用急剧增长,但THz-SIT仍面临着采集速度低、成本高、成像系统笨重、“穿透屏障”模式下光谱对比度有限和空间分辨力低等问题。
imaging technique | advantages | disadvantages |
---|---|---|
X-ray |
high penetration depth low cost relatively fast capture ∼ minutes |
ionizing radiation no chemical specificity low resolution ∼ 0.01 mm |
ultrasound |
non-ionizing low cost fast capture ∼ seconds |
no chemical specificity low penetration ∼ cm low resolution ∼ 0.01 mm |
magnetic resonance |
unlimited penetration non-ionizing high resolution ∼ 0.001 mm |
high cost slow capture ∼ hours lack of sensitivity in thin tissue |
THz spectral imaging |
non-ionizing high chemical specificity limited penetration through dielectrics |
high cost of the system slow capture ∼ minutes to hours image contrast is dependent on environmental conditions |
根据THz源的产生方式,THz成像系统分为电子学THz成像系统和光子学THz成像系统2种类
根据THz源的工作方式,THz成像系统分为THz脉冲成像系统和连续波(Continuous Wave,CW)成像系
pulse imaging system | CW imaging system | |
---|---|---|
theory and process | record intensity and phase of THz wave | edge scattering only record intensity |
resolution | high (under 1.1 mm) | low (2.6 mm/0.2 THz) |
noise | small | big |
image speed | slow | fast |
information quantity | big | small |
application | image identification, hidden objects | nondestructive test security |
price | expensive | cheap |
complexity | complicate | simple |
portability/kg | 100 | 2 |
1) 镀金画板是中世纪早期发展起来的一种特殊的艺术形式。制作方法是在木板支架上涂一层薄薄的底漆,然后在一层打底的红玄武土层上绘

图11 西西里岛陶尔米纳公共图书馆的14世纪圣母与圣婴圣像(32 cm×39 cm×0.8 cm)
Fig. 11 Virgin with Child and a Saint, 14th century icon (32 cm×39 cm×0.8 cm), Public Library in Taormina, Sicily.
2) 帆布绘画。文艺复兴早期,因为帆布价格便宜,而且可以折叠便于运输,画家们开始使用帆布代替画板作为绘画的支撑。相对木板,帆布对THz光更加透明,2006年首次利用透射式THz-TDS对帆布画作进行了THz检

图12 (a) 这幅画的前表面照片,有6道用生棕土颜料绘制的笔画隐藏在铅白下面,虚线表示线扫描的位置,结果如图(b)和(c)所示
Fig.12 (a) photograph of the front surface of the painting on which the six raw umber strokes, hidden underneath the lead white, have schematically been drawn. The dashedlines represent the location of the line scans of which the results are shown in (b) and (c)
3) 石膏类壁画。自2008年,THz成像可以穿透近1 cm深度石膏的研究报

图13 3处壁画的实验检测现场图
Fig.13 Photographs showing experiments being conducted in three mural scenes
(a) Chartres Cathedral, France; (b) Riga Dome Cathedral, Latvia (c) Chartreuse du Val de Bénédiction, France
4) 画布上的油画。其通常是由很薄的油画布和绘画层组成,为了无损地观察小于0.2 mm厚度的绘画层结构,选择THz相干层析成像技术可能是各种无损检测方法中最有效的方

图14 帆布油画《圣塞西莉亚》的THz脉冲时域成像图
Fig.14 THz pulsed TDI of an oil painting on canvas, “Santa Cecilia”
通过科学检测可以揭示涂层结构和使用的材料类型,但实验数据不能告诉我们是谁添加了涂料。众所周知,毕加索经常重新绘制他的作品,并使用各种类型的艺术材料,包括为木匠准备的工业涂
1) 利用THz光对纺织品的穿透性,可将THz成像技术用于研究艺术和考古用纺织品包裹的物体,如木乃伊,以检测其内部解剖特

图15 卡鲁歇尔木乃伊(MMA 86.1.35),卡鲁歇尔生活在埃及第22王朝(约公元前945-712年)
Fig.15 Mummy of Kharushere (MMA 86.1.35, Funds from Various Donors, 1886), Kharushere lived during Egypt’s Dynasty 22 (ca. 945-712 B.C.)

图16 1区卡鲁歇尔木乃伊的THz反射图像和输出信号波形(区域1)
Fig.16 THz reflection images and an output signal waveform of the mummy of Kharushere, Area 1
2) 漆器家具是用多层复合漆进行装饰的物品,是东亚艺术最重要的表达之一,深受西方国家的欣赏,对世界艺术和工艺产生了很大的影响。利用反射式THz成像系统可对其内部漆层、石膏及木制衬底进行检测和研究。Dandolo组先后对丹麦皇家美术学院的欧式漆器仿制

图17 (a)女王收藏的漆屏风,白色方块定位了第一个扫描区域;(b) 第一个扫描区域;(c) THz峰峰图;(d) 将频率间隔分别为0.06~0.28 THz,0.53~0.65 THz,0.86~0.93 THz置于红、绿、蓝通道实现的伪显色。白色方块表示异常区域;(e) 前图的相关细节
Fig.17 (a) The lacquered screen belonging to the Queen collection. The white square localizes the first scanned area; (b) the first scanned area; (c) THz peak-to-peak image; (d) false color rendering realized by placing the frequency intervals 0.06~0.28 THz, 0.53~0.65 THz, 0.86~0.93 THz respectively into the red, green and blue channel. The white square localizes the anomalous area; (e) relevant detail of the previous image
3) 陶瓷类文物。通过多回波信号的THz成像无损分析方

图18 (a) 0°时密封的埃及陶罐的复合光学和THz透射图像。陶罐截面的透射投影角度为:(b) 0°;(c) 20°;(d) 40
Fig.18 (a) composite optical and terahertz transmission images of a sealed Egyptian clay vessel at 0°; transmission projections of section of vessel at (b) 0°; (c) 20°; and (d) 40
4) 金属类文物,利用THz成像技术可对其腐蚀程度、铭文、隐藏形状、结构、材质等进行精确的无损评估和鉴

图19 (左上)埃及青铜雕像(奥西里斯,inv. 5458);(右上)由腐蚀层下的青铜和矿化区的高分层所反射的THz回波脉冲图像;(下图)3个不同腐蚀程度的LIPS元素深度剖面对应的THz测量结
Fig.19 (Upper left) Bronze Egyptian figurine (Osiris inv. 5458); (upper right) echo pulse image and THz signals reflected from bronze beneath corrosion layers, and from a mineralization area with high stratification; (bottom) LIPS elemental depth profiles on three sites in correspondence of THz measurements with different degrees of corrosio
THz 辐射仍是一个尚未开发完全的光谱范围,它将为深入了解艺术品、寻找丢失文物、鉴定文物、勘探文物的劣化过程以及改善绘画、壁画和其他文物的保护提供一个重要新工具。使用THz技术对文物进行无损检测,主要有以下潜在优势:a) 无辐射风险。相对X射线,THz 辐射是非电离的,不会对文物工作者的健康和文物材料的安全产生负面影响,不需要辐射屏蔽室等特定设施还可以保证高的信噪比。b) 非接触式。可以在反射模式下工作且检测速度快。c )成本下降。随着脉冲激光器和其他光学元件以及整个THz 系统成本的逐步下降,这为博物馆等文保单位的广泛使用创造了潜在条件。d )便于携带。研究设施中常见的相对笨重的THz 实验站逐渐演变为商用、手提箱大小的仪器,很容易带进博物馆及不可移动文物现场进行现场检测,也便于在文保部门之间进行转移。
最后,展望了THz 无损检测技术未来在文物保护领域的应用趋势(见

图20 THz无损检测技术在文物保护领域应用的未来展望
Fig.20 Future prospect of the application of THz nondestructive testing technology in the field of cultural relic protection
参考文献
DOEHNE E,PRICE C A. Stone conservation:an overview of current research[M]. California:The Getty Conservation Institute, 2010. doi:10.2307/1506649. [百度学术]
FUKUNAGA K. THz technology applied to cultural heritage in practice[M]. Tokyo:Springer, 2016. doi:10.1007/978-4-431-55885-9. [百度学术]
WEISS T,RASOLOFOSAON P N J,SIEGESMUND S. Ultrosonic wave velocities as a diagnostic tool for the quality assessment of marble[J]. Geological Society,London,Special Publications, 2002,205(1):149,164. doi:10.1144/GSL.SP.2002.205.01.12. [百度学术]
NEAL A,ROBERTS C L. Applications of Ground-Penetrating Radar(GPR) to sedimentological,geomorphological and geoarchaeological studies in coastal environments[J]. Geological Society,London,Special Publications, 2000,175(1):139-171. doi:10.1144/GSL.SP.2000.175.01.12. [百度学术]
WISEMAN J R,EL-BAZ F. Remote sensing in archaeology[M]. Heidelberg:Springer, 2007. doi:10.1016/B978-0-12-003107-8.50010-4. [百度学术]
COSENTINO A. Identification of pigments by multispectral imaging:a flowchart method[J]. Heritage Science, 2014,2(8):1-12. doi: 10.1186/2050-7445-2-8. [百度学术]
COSENTINO A. A practical guide to Panoramic Multispectral Imaging[J]. E-Conservation, 2013(25):64-73. doi:10.1109/TIP.2015.2436342. [百度学术]
COSENTINO A,GIL M,RIBEIRO M,et al. Technical photography for mural paintings:the newly discovered frescoes in Aci Sant'Antonio(Sicily,Italy)[J]. Conservar Patrimonio, 2014,20(20):23-33. doi:10.14568/cp2015001. [百度学术]
COSENTINO A,STOUT S. Photoshop and multispectral imaging for art documentation[J]. E-Preservation Science, 2014(11):91-98. [百度学术]
YAN Y,WEN C,JIN M,et al. FTIR spectroscopy in cultural heritage studies:non-destructive analysis of Chinese handmade papers[J]. Chemical Research in Chinese Universities, 2019,35(4):586-591. doi:10.1007/s40242-019-9026-4. [百度学术]
BACCI M,BELLUCCI R,CUCCI C,et al. Fiber optics reflectance spectroscopy in the entire VIS-IR range:a powerful tool for the non-invasive characterization of paintings[J]. MRS Online Proceedings Library, 2004,852(1):156-166. doi:10.1557/PROC-852-OO2.4. [百度学术]
GABRIELI F,DOOLEY K A,FACINI M,et al. Near-UV to mid-IR reflectance imaging spectroscopy of paintings on the macroscale[J]. Science Advances, 2019,5(8):7794. doi:10.1126/sciadv.aaw7794. [百度学术]
COSENTINO A. Practical notes on ultraviolet technical photography for art examination[J]. Conservar Patrimonio, 2015(21):53-62. doi:10.14568/cp2015006. [百度学术]
MASI G,BALBO A,ESVAN J,et al. X-ray photoelectron spectroscopy as a tool to investigate silane-based coatings for the protection of outdoor bronze:the role of alloying elements[J]. Applied Surface Science, 2018(433):468-479. doi:10.1016/j.apsusc. 2017.10.089. [百度学术]
BURRAFATO G,CALABRESE M,COSENTINO A,et al. ColoRaman project:Raman and fluorescence spectroscopy of oil,tempera and fresco paint pigments[J]. Journal of Raman Spectroscopy, 2004,35(10):879-886. doi:10.1002/jrs.1229. [百度学术]
COSENTINO A,STOUT S,SCANDURRA C. Innovative imaging techniques for examination and documentation of mural paintings and historical graffiti in the catacombs of San Giovanni,Syracuse[J]. Syracuse. Int. J. Conserv. Sci., 2015,6(1):23-34. [百度学术]
BOM V R,COSENTINO A,SERACINI M,et al. Neutron back scattering for the search of the Battle of Anghiari[J]. Applied Radiation and Isotopes, 2010,68(1):66-70. doi:10.1016/j.apradiso.2009.07.025. [百度学术]
KUZNETSOV A V,GORSHKOV I Y,EVSENIN A V,et al. Nanosecond Neutron Analysis for the search of the lost Leonardo's masterpiece,the Battle of Anghiari[J]. Nuclear Instruments and Methods in Physics Research,Section B, 2009,267(23-24):3694-3697. doi:10.1016/j.nimb.2009.09.006. [百度学术]
KAMPASAKALI E,BRONWYN O,COSENTINO A,et al. A preliminary evaluation of the surfaces of acrylic emulsion paint films and the effects of wet-cleaning treatment by Atomic Force Microscopy(AFM)[J]. Studies in Conservation, 2011,56(3):216-230. doi: 10.1016/j.polymdegradstab.2018.11.001. [百度学术]
刘小明,俞俊生,陈晓东. 毫米波及太赫兹准光学技术:理论、应用与发展[J]. 太赫兹科学与电子信息学报, 2022,20(7):631-652. [百度学术]
LIU Xiaoming,YU Junsheng,CHEN Xiaodong. Quasi-optical technology in the millimeter and terahertz wave ranges: theory,applications,and development[J]. Journal of Terahertz Science and Electronic Information Technology, 2022,20(7):631-652.doi:10.11805/TKYDA2021299. [百度学术]
SIRTORI C. Bridge for the terahertz gap[J]. Nature, 2002,417(6885):132-133. doi:10.1038/417132b. [百度学术]
COSENTINO A. Terahertz and cultural heritage science:examination of art and archaeology[J]. Technologies, 2016,4(1):6. doi:10.3390/technologies4010006. [百度学术]
刘盛纲,钟任斌. 太赫兹科学技术及其应用的新发展[J]. 电子科技大学学报, 2009,38(5):481-486. [百度学术]
LIU Shenggang,ZHONG Renbin. Recent development of terahertz science and technology and its applications[J]. Journal of UEST of China, 2009,38(5):481-486.doi:10.3969/j.issn.1009-2412.2006.01.00. [百度学术]
TONOUCHI M. Galore new applications of terahertz science and technology[J]. Terahertz Science and Technology, 2009,2(3):90-101. [百度学术]
KRUGENER K,BUSCH S F,SOLTANI A,et al. THz time domain spectroscopy—non-destructive evaluation of material detachments from exposed natural stone and ceramic objects[C]// 2017 International Conference on Infrared, Millimeter,and Terahertz Waves. Cancun,Mexico:[s.n.], 2017:1-2. doi:10.1109/IRMMW-THz.2017.8067084. [百度学术]
JARR C J,KOVACH J J. Far-infrared spectroscopy of minerals and inorganics[J]. Applied Spectroscopy, 1969,23(3):219-223. doi: 10.1366/000370269774380932. [百度学术]
FUKUNAGA K,HOSAKO I,PICOLLO M. Innovative terahertz spectroscopy and imaging technique for art conservation science[C]// 2010 10th International Conference on Solid Dielectrics. Potsdam,Germany:[s.n.], 2010:426. doi:10.1016/j.crhy. 2010.05.004. [百度学术]
IRUG COMMUNITY. Infrared Raman Users' Group website[EB/OL]. [2022-06-30]. http://www.irug.org/. [百度学术]
PRICE B A,PRETZEL B,LOMAX S Q,et al. Revised JCAMP-DX spectral file format for submissions to the Infrared & Raman Users Group(IRUG) spectral database[EB/OL]. [2022-06-30]. http://mal.irug.org/. [百度学术]
FUKUNAGA K,PICOLLO M. Terahertz spectroscopy applied to the analysis of artists' materials[J]. Applied Physics A, 2010,100(3):591-597. doi:10.1007/s00339-010-5643-y. [百度学术]
FUKUNAGA K. Terahertz spectral database:construction of open terahertz spectral database[J]. J. Nat. Inst. Inf. Commun. Technol., 2008,55(1):61-66. [百度学术]
BANDYOPADHYAY A,SENGUPTA A,BARAT R B,et al. Effects of scattering on THz spectra of granular solids[J]. International Journal of Infrared and Millimeter Waves, 2007,28(11):969-978. doi:10.1007/s10762-007-9276-y. [百度学术]
STRACHAN C J,RADES T,NEWNHAM D A,et al. Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials[J]. Chemical Physics Letters, 2004,390(1-3):20-24. doi:10.1016/j.cplett.2004.03.117. [百度学术]
FUKUNAGA K,HOSAKO I,KOHDZUMA Y,et al.Terahertz analysis of an East Asian historical mural painting[J]. Journal of the European Optical Society-Rapid Publications, 2010,5(5):10024. doi:10.2971/jeos.2010.10024. [百度学术]
MIZUNO M,FUKUNAGA K,SAITO S,et al. Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy[J]. Journal of the European Optical Society-Rapid Publications, 2009,4(9):09044. doi:10.2971/jeos.2009.09044. [百度学术]
FUKUNAGA K,OGAWA Y,HAYASHI S,et al. Application of terahertz spectroscopy for character recognition in a medieval manuscript[J]. IEICE Electro. Express, 2008,5(7):223-228. doi:10.1587/elex.5.223. [百度学术]
YAMAMOTO K,FUKUNAGA K,MIZUNO M,et al. Examination of pigments by using FT-THz[C]// 2010 35th International Conference on Infrared,Millimeter,and Terahertz Waves. Rome,Italy:[s.n.], 2010:1-4. doi:10.1109/ICIMW.2010.5612321. [百度学术]
KRÜGENER K,SCHWERDTFEGER M,BUSCH S F,et al. Terahertz meets sculptural and architectural art:evaluation and conservation of stone objects with T-ray technology[J]. Scientific Reports, 2015,5(1):14842. doi:10.1038/srep14842. [百度学术]
KRÜGENER K,BUSCH S F,SOLTANI A,et al. Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy[J]. Journal of Infrared Millimeter and Terahertz Waves, 2017,38(4):495-502. doi: 10.1007/s10762-016-0339-9. [百度学术]
MENG T H,DU R Q,HOU Z,et al. THz spectra-based SVM prediction model for Yungang Grottoes sample[J]. Journal of Archaeological Science, 2015,55(3):280-285. doi:10.1016/j.jas.2015.01.012. [百度学术]
MENG T H,HUANG R,LU Y H,et al. Highly sensitive terahertz non-destructive testing technology for stone relics deterioration prediction using SVM-based machine learning models[J]. Heritage Science, 2021,9(24):9. doi:10.1186/s40494-021-00502-7. [百度学术]
FENG J,MENG T H,LU Y H,et al. Nondestructive testing of hollowing deterioration of the Yungang Grottoes based on THz-TDS[J]. Electronics, 2020,9(4):625. doi:10.3390/electronics9040625. [百度学术]
MENG T H,YANG C Q,LU Y H,et al. Spectroscopy study of Yungang Grottoes weathered material in terahertz range[C]// 2011 International Symposium on Photoelectronic Detection and Imaging. Beijing,China:[s.n.], 2011:81591C-1-7. doi:10.1117/12.900825. [百度学术]
卢玉和,孟田华,杨成全,等. 应用太赫兹技术对云冈石窟不同岩石样品的分析[J]. 测试技术学报, 2011,25(6):536-539. [百度学术]
LU Yuhe,MENG Tianhua,YANG Chengquan,et al. Applications of terahertz technology in analysis of different rock samples for Yungang Grottoes[J]. Journal of Test and Measurement Technology, 2011,25(6):536-539.doi:10.3969/j.issn.1671-7449.2011.06.012. [百度学术]
杨成全,孟田华,石少坚,等. 云冈石窟内外石雕风化差异的光谱研究[J]. 内蒙古大学学报, 2013,44(6):572-577. [百度学术]
YANG Chengquan,MENG Tianhua,SHI Shaojian,et al. Spectrum study on the weathering difference of stone caving between inside and outside of the Yungang Grottoes[J]. Journal of Inner Mongolia University, 2013,44(6):572-577.doi:CNKI:SUN:NMGX.0.2013-06-003. [百度学术]
MENG T H,LU Y H,ZHAO G Z,et al. A synthetic approach to weathering degree classification of stone relics case study of the Yungang Grottoes[J]. Heritage Science, 2018,6(1):7. doi:10.1186/s40494-017-0165-y. [百度学术]
SKRYL A S,JACKSON J B,BAKUNOV M I,et al. Terahertz time-domain imaging of hidden defects in wooden artworks: application to a Russian icon painting[J]. Applied Optics, 2014,53(6):1033-1038. doi:10.1364/AO.53.001033. [百度学术]
BARDON T,MAY R K,TADAY P F,et al. Systematic study of terahertz time-domain spectra of historically informed black inks[J]. Analyst, 2013,138(17):4859-4869. doi:10.1039/C3AN00331K. [百度学术]
BARDON T,MAY R K,TADAY P F,et al. Material characterization of historical parchment using terahertz time-domain spectroscopy[C]// Proceedings of the 2014 39th International Conference on Infrared,Millimeter,and Terahertz waves. Tucson,AZ,USA:[s.n.], 2014:1-2. doi:10.1109/IRMMW-THz.2014.6956032. [百度学术]
王远,折帅,周南,等. 基于太赫兹时域光谱技术的红木分类识别[J]. 光谱学与光谱分析, 2019,39(9):2719-2724. [百度学术]
WANG Yuan,SHE Shuai,ZHOU Nan,et al. Classification of terahertz rosewood based on continuous projection algorithm and random forest[J]. Spectro. Spectral Analysis, 2019,39(9):2719-2724.doi:10.3964/j.issn.1000-0593(2019)09-2719-06. [百度学术]
张文涛,王思远,占平平,等. 基于太赫兹时域光谱技术的红木检测方法[J]. 光学学报, 2017,37(2):0230006. [百度学术]
ZHANG Wentao,WANG Siyuan,ZHAN Pingping,et al. Method of identifying red wood based on terahertz Time-Domain Spectroscopy[J]. Acta Optica Sinica, 2017,37(2):0230006. doi:10.3788/AOS201737.0230006. [百度学术]
刘海玲,翟东为,杨玉平,等. 基于THz光谱成像的纸币真伪鉴别研究[J]. 光谱学与光谱分析, 2018,38(7):2021-2025. [百度学术]
LIU Hailing,ZHAI Dongwei,YANG Yuping,et al. Identification of true and counterfeit Hundred RMB of the 2005 edition based on transmitted THz pulse imaging[J]. Spectro. Spectral Analysis, 2018,38(7):2021-2025.doi:10.3964/j.issn.1000-0593(2018)07-2021-05. [百度学术]
MITTLEMAN D M. Twenty years of terahertz imaging[J]. Optics Express, 2018,26(8):9417-9431. doi:10.1364/oe.26.009417. [百度学术]
CASTRO-CAMUS E,KOCH M,MITTLEMAN D M. Recent advances in terahertz imaging:1999 to 2021[J]. Applied Physics Letters B, 2022,128(1):1-10. doi:10.1007/s003400050750. [百度学术]
BANDYOPADHYAY A,SENGUPTA A. Review of the concept,applications and implementation issues of terahertz spectral imaging technique[J]. IETE Technical Review, 2022,39(2):471-489. doi:10.1080/02564602.2020.1865844. [百度学术]
WAN M,HEALY J J,SHERIDAN J T. Terahertz phase imaging and biomedical applications[J]. Optics and Laser Technology, 2020,122(10):105859-105871. doi:10.1016/j.optlastec.2019.105859. [百度学术]
SUN Q,HE Y,LIU K,et al. Recent advances in terahertz technology for biomedical applications[J]. Quantitative Imaging in Medicine and Surgery, 2017,7(3):345-355. doi:10.21037/qims.2017.06.02. [百度学术]
GIOVANNACCI D,CHEUNG H C,WALKER G C,et al. Time-domain imaging system in the terahertz range for immovable cultural heritage materials[J]. Strain, 2019,55(2):12292. doi:10.1016/j.tifs.2011.12.006. [百度学术]
NAFTALY M,VIEWEG N,DENINGER A. Industrial applications of terahertz sensing:state of play[J]. Sensors, 2019,19(19):4203-4238. doi:10.3390/s19194203. [百度学术]
ARIUNBOLD G O,BANDYOPADHYAY A,PARAMESWARAN K,et al. Advanced spectroscopy in precision agriculture[J]. Optics & Photonics News, 2019,30(11):40-47. doi:10.1364/OPN.30.11.000040. [百度学术]
JACKSON J B,BOWEN J,WALKER G,et al. A survey of terahertz applications in cultural heritage conservation science[J]. IEEE Transactions on Terahertz Science and Technology, 2011,1(1):220-231. doi:10.1109/TTHZ.2011.2159538. [百度学术]
BENDADA A,SFARRA S,IBARRA-CASTANEDO C,et al. Subsurface imaging for panel paintings inspection:a comparative study of the ultraviolet,the visible,the infrared and the terahertz spectra[J]. Opto-Electronics Review, 2015,23(1):90-101. doi: 10.1515/oere-2015-0013. [百度学术]
DANDOLO C L K,JEPSEN P U. Wall painting investigation by means of non-invasive terahertz time-domain imaging(THz-TDI):inspection of subsurface structures buried in historical plasters[J]. Journal of Infrared Millimeter and Terahertz Waves, 2016,37(2):198-208. doi:10.1007/s10762-015-0218-9. [百度学术]
BARDON T,MAY R K,JACKSON J B,et al. Contrast in terahertz images of archival documents—part I:influence of the optical parameters from the ink and support[J]. Journal of Infrared Millimeter and Terahertz Waves, 2017,38(4):443-466. doi:10.1007/s10762-016-0351-0. [百度学术]
YANG Y,ZHAI D,ZHANG Z,et al. THz spectroscopic identification of red mineral pigments in ancient Chinese artworks[J]. Journal of Infrared Millimeter and Terahertz Waves, 2017,38(10):1232-1240. doi:10.1007/s10762-017-0408-8. [百度学术]
GUILLET J P,ROUX M,WANG K,et al. Art painting diagnostic before restoration with terahertz and millimeter waves[J]. Journal of Infrared Millimeter and Terahertz Waves, 2017,38(1):369-379. doi:10.1007/s10762-017-0358-1. [百度学术]
DANDOLO C L K,SALDAÑA G M P,CABALLERO M A I,et al. Terahertz time-domain imaging to guide a conservation intervention on a stratified easel painting[J]. Journal of Infrared Millimeter and Terahertz Waves, 2018,39(8):773-784. doi:10.1007/s10762-018-0505-3. [百度学术]
STÜBLING E M,REHN A,SIEBRECHT T,et al. Application of a robotic THz imaging system for sub-surface analysis of ancient human remains[J]. Scientific Reports, 2019,9(1):3390. doi:10.1038/s41598-019-40211-7. [百度学术]
KASHIMA M,TSUCHIKAWA S,INAGAKI T. Simultaneous detection of density,moisture content and fiber direction of wood by THz time-domain spectroscopy[J]. Journal of Wood Science, 2020,66(1):27. doi:10.1186/s10086-020-01874-3. [百度学术]
MIKEROV M,SHRESTHA R,VAN DOMMELEN P,et al. Analysis of ancient ceramics using terahertz imaging and photogrammetry[J]. Optics Express, 2020,28(15):22255-22263. doi:10.1364/OE.399336. [百度学术]
XU L,ZHANG X C,AUSTON D H. Terahertz beam generation by femtosecond optical pulses in electro-optic materials[J]. Applied Physics Letters, 1992,61(15):1784. doi:10.1063/1.108426. [百度学术]
PFEIFER T,HEILIGER H M,VON KAMIENSKI E S,et al. Fabrication and characterization of freely positionable silicon-on sapphire photoconductive probes[J]. Journal of the Optical Society of America B, 1994,11(12):2547-2552. doi:10.1364/josab.11.002547. [百度学术]
AUSTON D H,CHEUNG K P. Coherent time-domain far-Infrared spectroscopy[J]. Journal of the Optical Society of America B, 1985,2(4):606-612. doi: 10.1364/JOSAB.2.000606. [百度学术]
FATTINGER C H,GRISCHKOWSKY D. Terahertz beams[J]. Applied Physics Letters, 1989,54(6):490-492. doi:10.1063/1.100958. [百度学术]
杨昆,赵国忠,梁承森,等. 脉冲太赫兹波成像与连续波太赫兹成像特性的比较[J]. 中国激光, 2009,36(11):2853-2858. [百度学术]
YANG Kun,ZHAO Guozhong,LIANG Chengsen,et al. Comparison between pulsed terahertz imaging and continuous-wave terahertz imaging[J]. Chinese Journal of Lasers, 2009,36(11):2853-2858.doi:10.3788/CJL20093611.2853. [百度学术]
DORNEY T D,BARANIUK R G,MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A, 2001,18(7):1562-1571. [百度学术]
DUVILLARET L,GARET F,COUTAZ J L. Highly precise determination of optical constants and sample thickness in terahertz time domain spectroscopy[J]. Applied Optics, 1999,38(2):409-415. doi:10.1364/AO.38.000409. [百度学术]
张存林,张岩,赵国忠,等. 太赫兹感测与成像[M]. 北京:国防工业出版社, 2008. [百度学术]
ZHANG Chunlin,ZHANG Yan,ZHAO Guozhong,et al. Terahertz Sensing and Imaging[M]. Beijing:National Defense Industry Press, 2008. [百度学术]
LABAUNE J,JACKSON J B,FUKUNAGA K,et al. Investigation of Terra Cotta artefacts with terahertz[J]. Applied Physics Letters A, 2011,105(8):5-9. doi:10.1007/s00339-011-6567-x. [百度学术]
KOCH-DAMDOLO C L,COSENTINO A,JEPSEN P U. Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging[J]. Studies in Conservation, 2015,60(S1):159-166. doi:10.1179/0039363015Z.000000000220. [百度学术]
COSENTINO A,DANDOLO C L K,CRISTAUDO A,et al. Diagnostics pre and post conservation on a 14th century gilded icon from Taormina,Sicily[J]. E-Conservation Journal, 2015,3(1):27-40. doi:10.18236/econs3.201505. [百度学术]
PICOLLO M,FUKUNAGA K,LABAUNE J. Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system[J]. Journal of Cultural Heritage, 2015,16(1):73-80. doi:10.1016/j.culher.2014.01.006. [百度学术]
KÖHLER W,PANZNER M,KLOTZBACH U,et al. Non-destructive investigation of paintings with THz-radiation[C]// Proceedings of the 9th European Conference on NDT:ECNDT. Berlin,Germany:[s.n.], 2006:81. [百度学术]
ABRAHAM E,YOUNUS A,El-FATIMY A,et al. Broadband terahertz imaging of documents written with lead pencils[J]. Optics Communications, 2009,282(15):3104-3107. doi:10.1016/j.optcom.2009.04.039. [百度学术]
ADAM A J L,PLANKEN P C M,MELONI S,et al. Terahertz imaging of hidden paint layers on canvas[J]. Optics Express, 2009,17(5):3407-3416. doi:10.1364/oe.17.003407. [百度学术]
JACKSON J B,MOUROU M,WHITAKER J F,et al. Terahertz imaging for non-destructive evaluation of mural paintings[J]. Optics Communications, 2008,281(4):527-532. doi:10.1016/j.optcom.2007.10.049. [百度学术]
WALKER G C,JACKSON J B,GIOVANNACCI D,et al. Terahertz analysis of stratified wall plaster at buildings of cultural importance across Europe[C]// Proceedings of the Optics for Arts,Architecture,and Archaeology IV. Munich,Germany:[s.n.], 2013:8790. doi:10.1117/12.2020596. [百度学术]
SECO-MARTORELL C, LOPEZ-DOMINGUEZ V,ARAUZ-GAROFALO G,et al. Goya's artwork imaging with terahertz waves[J]. Optics Express, 2013,21(15):17800-17805. doi:10.1364/OE.21.017800. [百度学术]
KOCH-DANDOLO C L,FILTENBORG T,FUKUNAGA K,et al. Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting[J]. Applied Optics, 2015,54(16):5123-5129. doi:10.1364/AO.54.005123. [百度学术]
CASADIO F,ROSE V. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments:hard X-ray nanoprobe applications to the paints of Pablo Picasso[J]. Applied Physics Letters A, 2013,111(1):1-8. doi:10.1007/s00339-012-7534-x. [百度学术]
CESARANI F,MARTINA M C,FERRARIS A,et al. Whole-body three-dimensional multidetector CT of 13 Egyptian human mummies[J]. American Journal of Roentgenology, 2002,180(3):597-606. doi:10.2214/ajr.180.3.1800597. [百度学术]
HOFFMAN H,TORRES W E,ERNST R D. Paleoradiology:advanced CT in the evaluation of nine Egyptian mummies[J]. Radiographics, 2002,22(2):377-385. doi:10.1148/radiographics.22.2.g02mr13377. [百度学术]
FUKUNAGA K,CORTES E,COSENTINO A,et al. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy[J]. Journal of the European Optical Society-Rapid Publication, 2011,6(6):11040. doi:10.2971/jeos.2011.11040. [百度学术]
DANDOLO C L K,JEPSEN P U,CHRISTENSEN M C. Characterization of European lacquers by Terahertz(THz) reflectometric imaging[C]// IEEE Proceedings of the 1st Digital Heritage Conference. Marseille,France:[s.n.], 2013:89-94. doi:10.1109/DigitalHeritage.2013.6743717. [百度学术]
DANDOLO C L K,CATTERSEL V,JEPSEN P U. Terahertz time-domain imaging of a 17th century lacquered cabinet:a contribution to European lacquerwares characterization[C]// Proceedings of the 40th International Conference on Infrared, Millimeter and Terahertz Waves. Hong Kong,China:[s.n.], 2015:1-4. doi:10.1109/IRMMW-THz.2015.7327534. [百度学术]
DANDOLO C L K,MOGENSEN J B,CHRISTENSEN M C,et al. Frequency analysis of Terahertz Time-Domain Imaging(THz-TDI) of a XIX century Chinese lacquered screen[C]// Proceedings of the 41st International Conference on Infrared,Millimeter and Terahertz Waves. Copenhagen,Denmark:[s.n.], 2016:1-4. doi:10.1109/IRMMW-THz.2016.7758715. [百度学术]
ZHANG J Y,REN J J,LI L J,et al. THz imaging technique for nondestructive analysis of debonding defects in ceramic matrix composites based on multiple echoes and feature fusion[J]. Optics Express, 2020,28(14):19901-19915. doi:10.1364/OE.394177. [百度学术]
MIKEROV M,SHRESTHA R,VAN DOMMELEN P,et al. An analysis of ancient ceramics using terahertz imaging and photogrammetry[J]. Optics Express, 2020,28(15):22255-22263. doi:10.1364/OE.399336. [百度学术]
LABAUNE J,JACKSON J B,FUKUNAGA K,et al. Investigation of Terra Cotta artefacts with terahertz[J]. Applied Physics Letters A, 2011,105(1):5-9. doi:10.1007/s00339-011-6567-x. [百度学术]
ZHAO H,WU D B,ZHAN H L,et al. Detection of iron corrosion by terahertz time-domain spectroscopy[C]// Proceedings of the Photoelectronic Technology Committee Conferences. Hefei,China:[s.n.], 2015:97953. doi:10.1117/12.2214316. [百度学术]
DONG J L,RIBEIRO A,VACHERET A,et al. Revealing inscriptions obscured by time on an early-modern lead funerary cross using terahertz multispectral imaging[J]. Scientific Reports, 2022,12(3):3429. doi:10.1038/s41598-022-06982-2. [百度学术]
KURABAYASHI T,SAKAI S,FUJINO K. Sub-terahertz imaging of painted steel[C]// Proceedings of the 35th International Conference on Infrared,Millimeter and Terahertz Waves. Rome,Italy:[s.n.], 2010:1-2. doi:10.1109/ICIMW.2010.5612796. [百度学术]
CACCIARI I,AGRESTI J,SIANO S. Combined THz and LIPS analysis of corroded archaeological bronzes[J]. Microchemical Journal, 2016,126(5):76-82. doi:10.1016/j.microc.2015.11.051. [百度学术]