摘要
在太赫兹通信技术快速发展的背景下,建筑遮挡、恶劣天气等原因导致的复杂、弥散信道对通信安全性、可靠性提出新的挑战。太赫兹通信的保密属性在通信网络的广域性下隐含泄露、窃听等风险,研究现有的加密和防窃听手段在太赫兹通信中的可行性,推动物理层安全技术的创新与应用,实现信息的稳定安全传输,成为具备研究价值的热点问题。本文从安全通信角度出发,分析部分现有物理层加密与防窃听方法,总结其在太赫兹通信领域中的融合应用与效果,并对其未来发展趋势进行展望。
在太赫兹通信技术快速发展的趋势下,凭借高速通信优势所兴起的各项技术成为研究热点。太赫兹通信带来极高的信息传输速率和信道容量,但也使得信道弥散特性更复杂,引发针对安全、窃听、保密等问题的审视。无线信道本身具有的开放性与随机性,叠加环境因素引起的多径散射效
目前,物理层安全主要面临缺少高效加密手段、现有加密手段在新系统环境中适应性差、应用成本高等问题。如常用的通信密钥在如今设备计算能力不断增强的背景下,有被破译的风险;复杂信道环境降低了有效保密率、提高了信息传输成本等。现有的加密手段已无法满足太赫兹通信技术的安全需求,成为制约物理层安全技术在新一代无线网络中发展和应用的因素之一。
物理层安全技术包括了基于通信密钥、信道特性、多技术融合等多种保密方法,但实际应用环境、配套技术、成本等问题会给这些方法的使用带来各种各样的困难,如5G基站覆盖范围小,以及复杂的城市传播环境导致基站建设成本增加;基础设施与加密技术发展的非同步性导致保密手段落后于智能设备的进步。在开展对新的调制方式、天线阵列研究,实现陆地、海洋、空中的多维度通信,探讨区块链、可见光通信等潜在技术发展基础上,研究如何实现物理层安全技术在这些领域的有效应
本文分析了当前的主要物理层安全保密手段,对物理层安全通信领域的部分技术研究进行概括总结。探讨了太赫兹通信中,通信密钥、信道内生特性等物理层安全技术的研究现状、主要问题等,最后对太赫兹通信物理层通信技术的发展趋势进行展望。
无线信道天然的开放性和随机性,使其容易受到复杂天气条件的影响,并面临人为窃听等安全威胁。物理层安全技术的本质是利用无线信道特性的内生安全机制,为“一次一密”提供可行思
另一方面,智能网络中设备数量的不断增加,也对密钥的分发和有效性提出了挑
尽管作为加密技术之一的密钥,在新一代技术产业革命下,已不再具备“绝对安全”。重新考虑专注于无线信道特性而发展的物理层安全技术,实现信道特征与密钥之间的高效结合,可以探索出新的安全通信方案。
安全性是伪随机码的一个重要性质,特别对于卫星通信,安全性更是至关重要。现代通信系统中,应用的常用短码如m序列、Gold码,具有序列平衡、相关性好的特点,但它们的线性复杂度不高,安全性较差。通信密钥通常由系统自动生成或人工生成,且一组密钥分为加密和解密2部分。使用时,通信双方按照协定各自留存一份密码,用于信息的加解密传输。密钥是将一组无序校验码通过与明文中的二进制编码进行有限次的逻辑运算而得到,因此在窃听设备计算能力足够强大的前提下,其安全性将不会得到完全保证。
常见的通信双方通过公钥和私钥组成一对密钥对,实现身份验证和保证安全性,

图1 密钥加解密工作流程
Fig.1 Working process of key encryption and decryption
Bottarelli

图2 不同阈值分割策略下的信道非互易性因素影响
Fig.2 Influence of channel non-reciprocity factors under different threshold segmentation strategies
(a) CDF threshold segmentation strategy (b) AFD threshold segmentation strategy
Holenstein
(1) |
式中:V←U←X是指V,U,X 三者构成一条马尔科夫链,只从X经单一方向传达至V而不考虑其他可能情况。基于此条件,可得出发送方到接收方的有效密钥速率为H(U|ZV)-H(U|YV)。
另一方面,通信环境具有随机性。恶劣天气或复杂城市环境导致的衰落和多径效应使信号传播条件恶化,影响传输效
为了适应在复杂天气或城市条件下的通信环境,Y Kong

图3 密钥生成过程
Fig.3 Key generation process
(a) traditional key generation (b) JKG
J Zhang

图4 天线优化方案对SOP的影响
Fig.4 Influence of antenna optimization scheme on SOP
(a) SOP performance of optimal TAS scheme (b) SOP performance of suboptimal TAS scheme
在城市化不断加深、通信速率不断加快、网络覆盖率不断扩大的情况下,通过改善天线方向性、网络拓扑结构、信号传播链路和机制等强化通信安全性、延展通信距离和克服高路径损耗是可行
在太赫兹通信技术的快速发展下,数据传输的高速率和强安全性之间的结合也在逐步迈进。S Ju
(2) |
式中:FSPL(f,d)=20lg4πd0f/c;d0为参考距离,默认为1 m;xσ是期望为0,方差为
此外,作者将视距传输(Line of Sight,LOS)和非视距传输(Non-Line of Sight,NLOS)纳入研究范围,将PL作为太赫兹通信链路性能的评估指标,通过调整发射单元和接收单元数量、发射机与接收机的距离以及时间集群值,在测试中得到了对应的PL和延时扩展(Delay Spread,DS)等结果。在28 GHz,3个发射单位、16个接收单位,距离为5.3 m时,LOS可实现最小延迟和路径损耗,分别为4.9 ns和68.0 dB;在距离为5.5 m,发射单元为3个、接收单元为26个时,NLOS可达到最优效果,得到3.4 ns延迟和72.9 dB的损耗。当频率扩大至140 GHz时,LOS和NLOS两种情况均显示为无规律的结果,任何变量都有可能对PL和DS产生影响。
总的来看,虽然已能建立较小范围内同种设备间的太赫兹通信,但在太赫兹波段下保证种类不同的设备间的密钥有效性,仍需进一步研究。
利用信道内生特性实现的加密通信,作为实现物理层安全通信的方向之一,其通过改变信号传播特性的工作方式,在通信设施的用户容纳能力、通信运营商的合作组网力度不断提高的情况下,成为研究热点。其在一定程度上脱离了构建密钥所需的复杂算法,更注重通信设施的规划、信号传播方式的优化等,如,天线阵列的设计、信号协作干扰等。
D P M Osorioel
(3) |
此外,引入了far作为假报警率(指接收端正确接收了信息,但将其作为错误信息处理的概率):
(4) |
借助人工噪声,实现协作干扰,在最大化窃听方干扰的同时,确保通信双方的保密率是研究的方案之一。赵伟

图5 全双工接收机工作场景
Fig.5 Working scenario of full duplex receiver
实际通信过程中,窃听者信道的信息往往未

图6 无人机中继与协作干扰
Fig.6 UAV relay and cooperative jamming
S I Alnagar
此外,复杂的传播环境也是需要考虑的问题。研究大气环境的多变性影响对于保证协作干扰过程中人工噪声的有效性、稳定性是必要的。大气湍流、降雨、降雪、大雾等天气条件,都会在信号的传播过程中产生恶劣的多径效应和阴影衰
G Rafiq

图7 Suzuki城市模型
Fig.7 Suzuki city model
(a) influence of Suzuki city model on signal envelope (b) Suzuki channel average capacity under different SNRs
为了保证通信链路的稳定性、信号传播的有效性,Seyedi
1) 随着主信道的衰落系数和SNR的增大,SOP降低,ASC增大。
2) 窃听者信道中,随着衰落系数和SNR的增大,SOP增大,ASC降低。
3) 随着主、窃听信道中阴影效应的增强,ASC显著提高。
总之,已有研究学者利用信道自身特性,通过人工噪声加扰、多方协作干扰,或采用第三方设备协作干扰实现通信安全,但将这些成果转化为太赫兹应用条件下的具体实物,还需多方的联合发展,并经历理论创新、实验验证、系统优化等过程。
与相近的科研领域联合研究或跨学科研究是物理层安全通信的一种发展方向。结合其他学科领域的工作大多是将自身的信息交换功能同其他知识结合,需要利用物理层安全技术的研究目前仍较少,除了在通信领域应用,如光通信一类的其他通信类型上。结合太赫兹技术实现在医学领域中的应用,也存在对物理层安全技术的引入,如医疗纳米网络、远程医疗等。
通过太赫兹通信与物理层安全技术的结合,实现太赫兹通信物理层的安全,并将这种研究应用到医学领域中的纳米通信是当前的成果之一。利用太赫兹通信与物理层认证的双重优点,实现对患者病症的精准判断,是医疗诊断和治疗的重要发展课

图8 纳米医疗网络工作场景
Fig.8 Working scenario of nanomedical network
在与可见光通信系统融合研究上,将可见光通信高带宽、稳定性好等优点与太赫兹通信高穿透、抗干扰等特性结合,引入物理层安全技术。将具体的物理层安全技术在可见光通信系统中进行效果验证,为实现太赫兹通信中的物理层安全提供参考。另一方面,对发展自由空间中可见光通信安全手段也具有推动作用。将光频段高速信息传输的通信技术与物理层安全技术结
X Zhao

图9 可见光通信系统工作场
Fig.9 Working scenario of visible light communication syste
main research questions | specific direction | research work |
---|---|---|
research on security of communication key | research on security of V2V communication environment |
key performance research based on two threshold segmentation techniques of CDF and AF |
one-way communication key agreement |
derivation of effective key rate in one-way communicatio | |
joint key generation |
joint key generation method under multipath condition | |
antenna design and key performance research |
relationship between different TAS schemes and key performanc | |
security method based on channel characteristics | research on communication security of MIMO system |
research on interfering signal performance in MIMO syste |
full duplex receiver cooperative jamming |
combination of full-duplex receiver and artificial nois | |
UAV jamming network performance optimization |
power allocation problems in cooperative jamming process of UA | |
mobile communication performance under shadow fading |
research on mobile communication performance under fading condition | |
performance and system integration application of physical layer security technology | research on performance of physical layer security technology in different scenarios |
research on BER and BEO of channel in urban mode |
performance of main and eavesdropping channels in urban mode | ||
research on ultra-high speed communication performance of indoor mode | ||
multi-domain physical layer encryption technology |
physical layer authentication of nano medical networ | |
research on security performance of hybrid satellite and FSO syste | ||
ommunication security performance of visible light communication syste |
综上,通信密钥和基于信道内生特性的保密手段作为物理层安全技术的2个主要分支,通信密钥可适应种类复杂的通信设备,减少了因软硬件不适配导致的资源浪费,使用场景灵活。但随着各类智能设备的逐渐发展,密钥安全性能受到设备强大计算能力的威胁。本文中引用的研究成果也偏向于密钥生成算法的复杂性与保密性能的联系,以产生在太赫兹通信网络下通信密钥的工作思路。基于信道特性的保密手段脱离了复杂算法,避免了单凭计算能力破解的风险,但受到硬件设施复杂度及部署规划的制约。文中引用的研究成果集中在人工噪声及多方协作的干扰系统,此类系统与硬件设施联系密切,可为太赫兹通信网络下依靠基础设施实现的物理层安全技术提供借鉴方案。
在智能设备计算能力的快速进步下,基于通信密钥的保密手段需要更新加密算法。多重加密的算法是可行的途径,利用外貌、生物电磁波等个人生物特征的独特性将脑电技术或AI用于生成密钥,可在一定程度上提高安全性。另一方面,V Raghavan
当前,基础设施的覆盖率不断增大,硬件条件不断改善,考虑防止因计算能力导致的密钥泄露、弥补安全技术与设施发展不同步导致的短板、优化频谱利用等因素,发展基于信道内生特性的物理层保密手段较密钥具有更广阔的研究空间。T S Rappaport
参考文献
MEI Y,MA Y,MA J,et al. Eavesdropping risk evaluation on terahertz wireless channels in atmospheric turbulencee[J]. IEEE Access, 2021(9):101916-101923. [百度学术]
AKYILDIZ I F,KAK A,NIE S. 6G and beyond:the future of wireless communications systems[J]. IEEE Access, 2020(8):133995-134030. [百度学术]
TATARIA H,SHAFI M,MOLISCH A F,et al.. 6G wireless systems:vision,requirements,challenges,insights,and opportunities[J]. Proceedings of the IEEE, 2021,109(7):1166-1199. [百度学术]
HUANG T,YANG W,WU J,et al. A survey on green 6G network:architecture and technologies[J]. IEEE Access, 2019(7):175758-175768. [百度学术]
黄开枝,金梁,钟州. 5G物理层安全技术—以通信促安全[J]. 中兴通讯技术, 2019,25(4):43-49. [百度学术]
HUANG Kaizhi,JIN Liang, ZHONG Zhou. 5G physical layer security technology:enhancing security by communication[J]. ZTE Technology Journal, 2019,25(4):43-49. [百度学术]
NICANFAR H,JOKAR P,BEZNOSOV K,et al. Efficient authentication and key management mechanisms for smart grid communications[J]. IEEE Systems Journal, 2014,8(2):629-640. [百度学术]
CHEN R,LI C,YAN S,et al. Physical layer security for ultra-reliable and low-latency communications[J]. IEEE Wireless Communications, 2019,26(5):6-11. [百度学术]
PATTANAYAK D R,DWIVEDI V K,KARWAL V,et al. Secure transmission for energy efficient parallel mixed FSO/RF system in presence of independent eavesdroppers[J]. IEEE Photonics Journal, 2022,14(1):1-14. [百度学术]
VUPPALA S,TOLOSSA Y J,KADDOUM G,et al. On the physical layer security analysis of hybrid millimeter wave networks[J]. IEEE Transactions on Communications, 2018,66(3):1139-1152. [百度学术]
WANG W,ZHENG Z. Hybrid MIMO and phased-array directional modulation for physical layer security in mm wave wireless communication[J]. IEEE Journal on Selected Areas in Communications, 2018,36(7):1383-1396. [百度学术]
ZHANG Y,SHEN Y,JIANG X,et al. Secure millimeter-wave ad hoc communications using physical layer security[J]. IEEE Transactions on Information Forensics and Security, 2022(17):99-114. [百度学术]
SUN X,YANG W,CAI Y,et al. Physical layer security in millimeter wave SWIPT UAV-based relay networks[J]. IEEE Access, 2019(7):35851-35862. [百度学术]
EAE E C,ZHANG S J,LIU E J,et al. Advances in vehicular ad-hoc networks:challenges and road-map for future development[J]. International Journal of Automation and Computing, 2016,13(1):1-18. [百度学术]
EMURA K,KANAOKA A,OHATA S,et al. Secure and anonymous communication technique:formal model and its prototype implementation[J]. IEEE Transactions on Emerging Topics in Computing, 2016,4(1):88-101. [百度学术]
BOTTARELLI M,KARADIMAS P,EPIPHANIOU G,et al. Adaptive and optimum secret key establishment for secure vehicular communications[J]. IEEE Transactions on Vehicular Technology, 2021,70(3):2310-2321. [百度学术]
HOLENSTEIN T,RENNER R. One-way secret-key agreement and applications to circuit polarization and immunization of public-key encryption[C]// 25th Annual International Cryptology Conference. Berlin,Heidelberg:[s.n.], 2005:478-493. [百度学术]
WENG Z,KANNO A,DAT P T,et al. Millimeter-wave and terahertz fixed wireless link budget evaluation for extreme weather conditions[J]. IEEE Access, 2021(9):163476-163491. [百度学术]
SUOMALAINEN J,JULKU J,VEHKAPER M,et al. Securing public safety communications on commercial and tactical 5G networks:a survey and future research directions[J]. IEEE Open Journal of the Communications Society, 2021,2(1):1590-1615. [百度学术]
马李翠,黎妹红,吴倩倩,等. 智能电网通信中动态密钥加密方法的研究与改进[J]. 北京邮电大学学报, 2017,40(4):74-79. [百度学术]
MA Licui,LI Meihong,WU Qianqian,et al. Research of dynamic key encryption algorithm in smart grid communication[J]. Journal of Beijing University of Posts and Telecommunications, 2017,40(4):74-79. [百度学术]
ŠVOGOR I,KiŠASONDI T. Two-factor authentication using EEG augmented passwords[C]// Proceedings of the 34th International Conference on Information Technology Interfaces. Cavtat,Dubrovnik:[s.n.], 2012:373-378. [百度学术]
KONG Y,LYU B,CHEN F,et al. The security network coding system with physical layer key generation in two-way relay networks[J]. IEEE Access, 2018(6):40673-40681. [百度学术]
ZHANG J,WOODS R,DUONG T Q,et al. Experimental study on key generation for physical layer security in wireless communications[J]. IEEE Access, 2016(4):4464-4477. [百度学术]
WANG H,XU L,LIN W,et al. Physical layer security performance of wireless mobile sensor networks in smart city[J]. IEEE Access, 2019(7):15436-15443. [百度学术]
GHAFOOR S,BOUJNAH N,REHMANI M H,et al. MAC protocols for terahertz communication:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020,22(4):2236-2282. [百度学术]
JU S,XING Y,KANHERE O,et al. Millimeter wave and sub-terahertz spatial statistical channel model for an indoor office building[J]. IEEE Journal on Selected Areas in Communications, 2021,39(6):1561-1575. [百度学术]
OSORIOEL D P M,AHMAD L,SANCHEZ J D,et al. Towards 6G-enabled internet of vehicles:security and privacy[J]. IEEE Open Journal of the Communications Society, 2022(3):82-105. [百度学术]
HAO Y,QIU X. MIMO cross-layer secure communication algorithm for cyber physical systems based on interference strategies[J]. IEEE Access, 2020(8):226797-226810. [百度学术]
MA R,YANG W,SUN X,et al. Secure communication in millimeter wave relaying networks[J]. IEEE Access, 2019(7):31218-31232. [百度学术]
赵伟,宋茂忠. 一种基于多波束与人工噪声的物理层安全通信方法[J]. 电讯技术, 2011,51(7):30-33. [百度学术]
ZHAO Wei,SONG Maozhong. A secure method of physical layer transmission based on multi-beam and artificial noise[J]. Telecommunications Technology, 2011,51(7):30-33. [百度学术]
XIE Z,GENG X,CHEN Y,et al. Secured green communication scheme for interference alignment based networks[J]. Communications and Networks, 2020,22(1):23-36. [百度学术]
SHARMA K K,BOSE R. Secure communication with energy-harvesting buffer-aided jammer[J]. IEEE Open Journal of the Communications Society, 2021(2):1799-1808. [百度学术]
胡实,熊俊,马东堂,等. 一种面向无人机通信的协作干扰安全传输技术[J]. 信号处理, 2022,38(7):1525-1534. [百度学术]
HU Shi,XIONG Jun,MA Dongtang,et al. Cooperative interference secure transmission in UAV communication system[J]. Journal of Signal Processing, 2022,38(7):1525-1534. [百度学术]
FOTOUHI Azade,QIANG Haoran,DING Ming,et al. Survey on UAV cellular communications:practical aspects,standardization advancements, regulation,and security challenges[J]. IEEE Communications Surveys & Tutorials, 2019,21(4):3417-3442. [百度学术]
ALNAGAR S I,SALHAB A M,ZUMMO S A. Q-learning-based power allocation for secure wireless communication in UAV-aided relay network[J]. IEEE Access, 2021(9):33169-33180. [百度学术]
CANG L,ZHAO H,ZHENG G. The impact of atmospheric turbulence on terahertz communication[J]. IEEE Access, 2019(7): 88685-88692. [百度学术]
HUANG J,GAO Y,RAIMUNDO X,et al. Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links[J]. IEEE Access, 2019(7):156110-156120. [百度学术]
RAFIQ G,PATZOLD M. The impact of shadowing on the capacity of mobile fading channels[C]// The 4th International Symposium on Wireless Communication Systems. Trondheim:IEEE, 2007:209-214. [百度学术]
SEYEDI Y,SHIRAZI M,MOHARRER A,et al. Use of shadowing moments to statistically model mobile satellite channels in urban environments[J]. IEEE Transactions on Wireless Communications, 2013,12(8):3760-3769. [百度学术]
BADARNEH O S,SOFOTASIOS P C,MUHAIDAT S,et al. Achievable physical-layer security over composite fading channels[J]. IEEE Access, 2020(8):195772-195787. [百度学术]
RAHMAN M M U,ABBASI Q H,CHOPRA N,et al. Physical layer authentication in nano networks at terahertz frequencies for biomedical applications[J]. IEEE Access, 2017(5):7808-7815. [百度学术]
ABBASI Q H,YANG K,CHOPRA N,et al. Nano-communication for biomedical applications:a review on the state-of-the-art from physical layers to novel networking concepts[J]. IEEE Access, 2016(4):3920-3935. [百度学术]
SUN X,DJORDJEVIC I B. Physical-layer security in orbital angular momentum multiplexing free-space optical communications[J]. IEEE Photonics Journal, 2016,8(1):1-10. [百度学术]
AI Y,MATHUR A,CHEFFENA M,et al. Physical layer security of hybrid satellite-FSO cooperative systems[J]. IEEE Photonics Journal, 2019,11(1):1-14. [百度学术]
ZHAO X,CHEN H,SUN J. On physical-layer security in multiuser visible light communication systems with non-orthogonal multiple access[J]. IEEE Access, 2018(6):34004-34017. [百度学术]
RAGHAVAN V,LI J. Evolution of physical-layer communications research in the Post-5G era[J]. IEEE Access, 2019(7): 10392-10401. [百度学术]
RAPPAPORT T S,XING Y,KANHRE O,et al. Wireless communications and applications above 100 GHz:opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019(7):78729-78757. [百度学术]