摘要
均匀微带线是微带电路的基本结构,建立微带线PIM解析模型具有重要意义。本文基于受控源等效,在微带线的集总电路等效模型中,将微带线中的分布式寄生非线性PIM源建模为二次受控电流源或电压源,从而得到微带线PIM电压和电流关系的传输矩阵表达式,建立了寄生非线性机制的微带线PIM解析计算模型;并通过对比不同长度的镀镍微带线与不同浓度掺磷工艺镀镍微带线的传输互调与反射互调规律,验证本文提出的PIM传输矩阵方法的合理性。通过该模型提取了镍镀层在0.71 GHz时的三阶相对磁导率非线性系数为1×1
无源互调(PIM)是指2路及以上载波信号馈入微波射频无源器件中时,由于器件或连接等非线性导致载波信号的线性组合产物落入接收机的接收通带内,对接收机形成干扰,使其灵敏度降低的现象。连接器、同轴线缆和网状天线
微带器件的结构、材料与制备工艺等诸多因素都会对微带电路的PIM产生影响。因此,目前微带电路PIM研究的热点与难点是确定微带器件的PIM来源,并对PIM的规律进行理论推导预
在微带电路中,导体的电阻和电感、介质的电容和电导都会产生PIM信
(1) |
(2) |
(3) |
(4) |
式中:为电压;I为电流;R1和L1分别为电阻和电感的线性部分;G1和C1分别为电导和电容的线性部分;Rn、Ln、Gn、Cn分别代表电阻、电感和电导、电容的第n阶非线性系数;ω为角频率;dU、dI分别为长度为dz的传输线上的微分源;dz为微带线长度。

图1 微带线的集总电路等效模型
Fig.1 Lumped circuit equivalent model of microstrip line
将导体电阻和电感非线性组合为导体总的非线性,由
(5) |
(6) |
式中:rn和gn表示第n阶的导体非线性与介质非线性。
计算由2路载波信号ω1和ω2产生的PIM信号,2路载波信号可以表示为:
(7) |
(8) |
式中:a10和a20为入射波的幅值;b10和b20为反射波的幅值;k1和k2为传播常数;11和21为入射波的初始相位;12和22为反射波的初始相位;为衰减常数;z为电磁波传输方向上的坐标。
长度为z的微带线的非线性可由
(9) |
式中:xi为等效PIM受控电压源中第i个部分PIM信号的幅值;为第i个部分PIM信号的衰减分量。
令k1=k2,PIM信号源包含同频但不同幅和不同相位的6个部分,如
I | xi | -ηiαz | -kPIM,i | φi |
---|---|---|---|---|
1 | (3/4)a20 | -3αz | -k1 | 2φ11-φ21 |
2 | (3/4)a20 | αz | 3k1 | 2φ12-φ21 |
3 | -(3/4)b20 | -αz | -3k1 | 2φ11-φ22 |
4 | -(3/4)b20 | 3αz | k1 | 2φ12-φ22 |
5 | -(3/2)a10b10b20 | -αz | k1 | φ11+φ12-φ21 |
6 | (3/2)a10b10b20 | αz | -k1 | φ11+φ12-φ22 |
用指数形式重写
(10) |
同理,可得到由g3决定的等效PIM受控电流源(
(11) |
式中fi为xi与特性阻抗Z0的乘积。
根据基尔霍夫定律,由
(12) |
(13) |
(14) |
(15) |
式中:
(16) |
(17) |
(18) |
当z=0和z=l时,PIM信号为:
(19) |
(20) |
(21) |
式中A为长度为l的均匀传输线的传输矩阵。
(22) |
(23) |
(24) |
至此,推导出了均匀微带线的PIM方程,由
(25) |
(26) |
如果一个复杂的微带结构电路可以分割成级联的不同传输线形式,则每一部分的PIM信号方程可以由
采用聚四氟乙烯玻纤布(Poly Tetra Fluoro Ethylene,PTFE)覆铜板(泰州市旺灵绝缘材料厂)制备的微带线,并对其上导体进行镀镍处理,验证PIM计算方法的合理性。首先,将PTFE覆铜板的两面铜箔用刻蚀液腐蚀出微带线的形状和背面全部覆铜的接地板,其相对介电常数为3.5,厚度为1 mm,铜厚为0.035 mm。按照PTFE介质基板微带线50 Ω特征阻抗设计,微带线宽度为2.28 mm。在正面上导体上进行纯镍处理,如

图2 镀镍微带线实物图与电性能
Fig.2 Physical drawing and electrical properties of nickel-plated microstrip line
微带线的传输和反射互调的测试采用双载波馈入原理,利用镇江市澳华测控技术有限公司自主开发的专用PIM分析仪(型号为PIM700S)进行测试,测试的基本原理如

图3 传输和反射互调测试系统原理框图
Fig.3 Schematic diagram of transmission and reflection PIM test system

图4 #1、#2、#3实物图与PIM测试
Fig.4 Physical drawing and PIM test results of #1、#2、#3
假设镀镍微带线的均匀非线性由

图5 不同长度镀镍微带线的PIM测试结果
Fig.5 PIM test results of nickel-plated microstrip lines with different lengths
同时,由不同长度的镀镍微带线的PIMr和PIMf可推导出由
(27) |
式中:L3为电感的第3阶非线性系数;μ3为三阶相对磁导率非线性系数;d为微带线的介质层厚度;w为微带线的宽度。
本文基于受控源等效,建立了寄生非线性机制的微带线PIM传输矩阵解析模型。通过对比镀镍微带线与不同掺磷浓度的镀镍微带线的三阶互调规律,验证了镍的非线性磁导率是镀镍微带线互调的主要来源之一,并提取了镀镍层的三阶相对磁导率非线性系数。实验表明,镀镍微带线的传输互调与反射互调符合不同长度均匀微带线的PIM规律,验证了本文提出的微带线PIM传输矩阵理论方法的合理性。基于推导的寄生非线性机制微带线无源互调传输矩阵解析计算模型,提取出本文所使用镍镀层的三阶相对磁导率非线性系数为1×1
参考文献
毛煜茹,刘莹,谢拥军,等. 金属接触非线性引起的无源互调效应的数值分析[J]. 电子学报, 2015,43(6):1174-1178. [百度学术]
MAO Yuru,LIU Ying,XIE Yongjun,et al. Numerical analysis of passive intermodulation due to metallic contact nonlinearity[J]. Acta Electronica Sinica, 2015,43(6):1174-1178. [百度学术]
谢亚运,年夫顺,杨保国. 基于参考信号的无源互调故障定位技术[J]. 电子学报, 2017,45(4):832-836. [百度学术]
XIE Yayun,NIAN Fushun,YANG Baoguo. Fault location technology of passive intermodulation using reference signal[J]. Acta Electronica Sinica, 2017,45(4):832-836. [百度学术]
ZHAO Xiaolong,HE Yongning,YE Ming,et al. Analytic Passive intermodulation model for flange connection based on metallic contact nonlinearity approximation[J]. IEEE Transactions on Microwave Theory and Techniques, 2017,65(7):2279-2287. [百度学术]
王琪,狄学峰,李秋强,等. S频段低无源互调同轴滤波器设计[J]. 空间电子技术, 2017,14(6):49-53. [百度学术]
WANG Qi,DI Xuefeng,LI Qiuqiang,et al. A design of low-passive intermodulation coaxial filter in S-band[J]. Space Electronic Technology, 2017,14(6):49-53. [百度学术]
李殷乔,雷继兆,佟金成,等. 通信卫星无源互调控制及验证研究[J]. 空间电子技术, 2017,14(2):47-51. [百度学术]
LI Yinqiao,LEI Jizhao,TONG Jincheng,et al. Investigation on PIM mitigation and verification in communications satellites[J]. Space Electronic Technology, 2017,14(2):47-51. [百度学术]
王小丽,陈翔,崔万照. 空间大功率微波器件无源互调最新研究进展[J]. 空间电子技术, 2020,17(5):1-10. [百度学术]
WANG Xiaoli,CHEN Xiang,CUI Wanzhao,et al. Recent research advances of passive intermodulation for high-power microwave components[J]. Space Electronic Technology, 2020,17(5):1-10. [百度学术]
钱行. 应用于5G通信的多频带滤波器与滤波天线的研究[D]. 南昌:华东交通大学, 2020. [百度学术]
QIAN Xing. Research on multiband filters and filtering antenna for 5G communication[D]. Nanchang,Jiangxi,China:East China Jiaotong University, 2020. [百度学术]
郑丽萍,和铭. 应用于5G无线通信的微带周期结构带通滤波器设计[J]. 重庆邮电大学学报(自然科学版), 2019,31(4):517-523. [百度学术]
ZHENG Liping,HE Ming. Design of the period structure microstrip bandpass filter for 5G wireless communication applications[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2019,31(4): 517-523. [百度学术]
叶鸣,肖怡,陶长英,等. 微带传输线的无源互调效应实验研究[J]. 电波科学学报, 2014,29(3):471-475. [百度学术]
YE Ming,XIAO Yi,TAO Changying,et al. Experimental research on passive intermodulation effect of microstrip lines[J]. Chinese Journal of Radio Science, 2014,29(3):471-475. [百度学术]
李霄枭,崔万照,胡天存,等. 无源互调抑制技术研究现状及发展趋势[J]. 空间电子技术, 2017,14(4):1-6. [百度学术]
LI Xiaoxiao,CUI Wanzhao,HU Tiancun,et al. Review of passive intermodulation techniques and development trend[J]. Space Electronic Technology, 2017,14(4):1-6. [百度学术]
陈雄,罗宇,马凯学,等. 基于耦合结构的双向可调无源互调参考源[J]. 空间电子技术, 2020,17(5):20-23. [百度学术]
CHEN Xiong,LUO Yu,MA Kaixue,et al. Coupling network based tunable bidirectional PIM reference for passive intermodulation measurements[J]. Space Electronic Technology, 2020,17(5):20-23. [百度学术]
ZELENCHUK D,SHITVOV A,SCHUCHINSKY A,et al. Discrimination of passive intermodulation sources on microstrip lines[C]// Proceedings of the International Workshop in Multipactor,Corona and Passive Intermodulation. Valencia:IEEE, 2008:1-6. [百度学术]
WILKERSON J R,LAM P G,GARD K G,et al. Distributed passive intermodulation distortion on transmission lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2011,59(5):1190-1205. [百度学术]
叶鸣,贺永宁,崔万照. 基于电热耦合效应的微带线无源互调机理研究[J]. 电波科学学报, 2013,28(2):220-225. [百度学术]
YE Ming,HE Yongning,CUI Wanzhao. Passive intermodulation mechanism of microstrip lines based on the electro-thermal coupling effect[J]. Chinese Journal of Radio Science, 2013,28(2):220-225. [百度学术]
何鋆,王琪,胡天存,等. 微带线热致无源互调产物计算模型[J]. 西安电子科技大学学报, 2017,44(3):120-126. [百度学术]
HE Yun, WANG Qi,HU Tiancun,et al. Calculation model for thermal-caused passive intermodulation product of microstrip lines[J]. Journal of Xidian University, 2017,44(3):120-126. [百度学术]
ZELENCHUK D E,SHITVOV A P,SCHUCHINSKY A G,et al. Passive intermodulation in finite lengths of printed microstrip lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2008,56(11):2426-2434. [百度学术]
赵小龙,叶鸣,张松昌,等. 基于介电非线性机制的微带电路无源互调效应研究[J]. 电子学报, 2020,48(12):2289-2296. [百度学术]
ZHAO Xiaolong,YE Ming,ZHANG Songchang,et al. Passive intermodulation in microstrip circuits due to dielectric nonlinearity[J]. Acta Electronica Sinica, 2020,48(12):2289-2296. [百度学术]
SHITVOV A P,KOZLOV D S,SCHUCHINSKY A G. Nonlinear characterization for microstrip circuits with low passive intermodulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2018,66(2):865-874. [百度学术]
高凡,赵小龙,叶鸣,等. 一种基于偶极子近场耦合法测量无源互调的方法[J]. 空间电子技术, 2018,15(3):12-18. [百度学术]
GAO Fan,ZHAO Xiaolong,YE Ming,et al. A passive intermodulation measuring method based on the coupling of dipole near-field[J]. Space Electronic Technology, 2018,15(3):12-18. [百度学术]
李砚平,柴继泽,杨晓敏,等. 高低温环境下测试卫星天线无源互调的系统[J]. 空间电子技术, 2022,19(1):19-23. [百度学术]
LI Yanping,CHAI Jize,YANG Xiaomin,et al. Systems to test the passive intermodulation of satellite antenna in high and low temperature environment[J]. Space Electronic Technology, 2022,19(1):19-23. [百度学术]
李砚平,王海林,彭璐,等. 一种微振动条件下金属网天线反射面的PIM测试方法[J]. 空间电子技术, 2018,15(3):45-48. [百度学术]
LI Yanping,WANG Hailin,PENG Lu,et al. Detection of Passive Intermodulation for metal mesh under micro-vibration[J]. Space Electronic Technology, 2018,15(3):45-48. [百度学术]
KOZLOV D S,SHITVOV A P,SCHUCHINSKY A G. Characterisation of passive intermodulation in passive RF devices with X-parameters[C]// 2014 Loughborough Antennas and Propagation Conference(LAPC). Loughborough,UK:IEEE, 2014:64-67. [百度学术]
HENRIE J,CHRISTIANSON A,CHAPPELL W J. Prediction of passive intermodulation from coaxial connectors in microwave networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2008,56(1):209-216. [百度学术]