摘要
超构表面是一种由亚波长单元结构组成的人工表面,展现出巨大的电磁波操纵潜力,悬链线电磁学为超构表面的设计提供了新的思路和方法。本文提出一种基于悬链线结构的多功能二向色性超构表面,能够在不同方向上实现对电磁波的选择吸收。仿真结果显示,该器件可在红外区域实现92%的线性二色性(LD)和96%的圆二色性(CD)。这两种功能仅需改变电磁波的入射方向就可同时实现,且两种功能在一定入射角范围内均具有较高的效率。此外,还分析了不同几何参数对吸收性能的影响,以及实现不同电磁波选择吸收的物理机制。该超构表面具有结构简单、便于集成以及应用范围广的优点,在成像、传感和光谱等领域具有潜在的应用前景。
二向色性,包括线二色性(LD)和圆二色性(CD),是指特定的材料在吸收线偏振电磁波或圆偏振电磁波时所表现出的偏振选择性吸收现象。自然界中许多物质都具有二向色性,如蛋白质、病毒以及DNA等,分析它们的二向色性响应,对于理解和认识它们的结构十分重要,因此二向色性在生物化学分析领域有着十分重要的价值。此外,二向色性材料还在偏振成像、偏振探测以及偏振传感等光学与光子学领域被广泛使用。
传统材料的二向色性响应通常较弱,需较长光程的积累以达到足够的对比度,这限制了该类器件的进一步集成化和小型化。超构表面的出现为解决上述问题提出了新的可行性办法。超构表面是一种由亚波长单元结构组成的二维人工材料,能够灵活有效地控制电磁波的振幅、相位、频率和偏振等特
在上述研究基础上,本文设计了一种基于悬链线结构的多功能二向色性超构表面。该超构表面可通过改变电磁波的入射方向实现对线偏振和圆偏振电磁波的选择性吸收。
(1) |
式中:x和y分别为

图1 基于悬链线结构的超构表面工作示意图
Fig.1 Schematic diagram of the proposed metasurface based on catenary structure

图2 超构表面的单元结构示意图
Fig.2 Schematic diagram of the unit structure of the metasurface
悬链线结构是通过将悬链线平移宽度w后获得的。利用商用电磁仿真软件CST Microwave Studio对单元结构进行参数扫描,得到优化后的几何参数。4层结构从上到下的厚度分别为h1=100 nm,h2=80 nm,h3=350 nm,h4=200 nm,单元结构的周期P=5 μm,悬链线的周期Λ=0.8P,悬链线的宽度w=200 nm。仿真中,x轴和y轴方向都采用unit cell作为边界条件,z轴方向则采用open作为边界条件。为模拟LD的性能,采用Floquet模式(TE和TM)发射线偏振平面电磁波;为模拟CD的性能,将Floquet模式改为圆偏振模式(LCP和RCP),发射圆偏振平面电磁波。使用CST Microwave Studio中内置的电场监测器计算电场分布,金、氟化镁和硅的材料参数来自参考文献[
(2) |
(3) |
式中:和分别表示横电(Transverse Electric,TE)和横磁(Transverse Magnetic,TM)波的共极化反射振幅;和分别表示它们的交叉极化反射振幅。由于底层为金属,在计算吸收率时,可不考虑透射振幅。为更清楚地表示不同线偏振电磁波的吸收差,引入LD进行表示:
(4) |
圆偏振电磁波吸收率ALCP和ARCP分别表示为:
(5) |
(6) |
式中:和分别表示LCP和RCP波的共极化反射振幅;和分别表示它们的交叉极化反射振幅。由于底层为金属,在计算吸收率时,可不考虑透射振幅。为更清楚地表示不同圆偏振电磁波的吸收差,引入CD进行表示:
(7) |
该超构表面可通过改变电磁波的入射方向实现对线偏振和圆偏振电磁波的选择性吸收。当线偏振电磁波以方位角φ=0°、入射角θ=60°入射到器件上时,TE电磁波几乎完全被吸收,而TM电磁波只有一小部分被吸收,器件表现出很强的LD,如
为说明器件的LD特性,首先研究线偏振电磁波在方位角φ=0°和入射角θ=60°的情况下,TE电磁波和TM电磁波入射到所设计的器件时产生的电磁响应。由

图3 线偏振电磁波和圆偏振电磁波的反射振幅和吸收率
Fig.3 Reflected amplitude and absorption of linearly polarized and circular polarized electromagnetic waves
sample | type | incident angle/(°) | LD/% | CD/% | reference |
---|---|---|---|---|---|
1 | transmission | 35~55 | 81 | 86 |
[ |
2 | reflection | 40~70 | 87 | 97 |
[ |
3 | transmission | 45~80 | 90 | 90 |
[ |
4 | reflection | 90 | — | 90 |
[ |
5 | reflection | 40~70 | 92 | 96 | this work |
提出一种针对该类器件的加工制备方法:首先,利用磁控溅射技术在2 mm厚的石英衬底上溅射出厚度为200 nm的金膜作为反射层,在金膜上沉积一层厚度为350 nm的硅,在硅膜上沉积一层厚度为80 nm的氟化镁,最后在氟化镁层上沉积一层厚度为100 nm的金;其次,在金膜上涂覆一层厚度为300 nm的AZ1500光刻胶层,通过激光直写在上部光刻胶中形成目标图案;最后,利用离子束刻蚀将悬链线结构转移到金层,并通过反应离子刻蚀去除残留的光刻胶。
研究不同结构参数对器件吸收性能的影响。如

图4 不同结构参数和几何特性对吸收性能的影响
Fig.4 Effect of different structural parameters and geometric properties on the absorption performance
实际应用中,除了要求器件具有较高的二向色性外,也不能忽视器件对电磁波入射角度的稳定性。

图5 器件对不同电磁波在不同入射角时的依赖关系
Fig.5 The dependence of the device on different electromagnetic waves at different incident angles
为进一步阐明二向色性的物理机制,对所设计结构在不同电磁波的电场分布情况进行分析。

图6 单元结构在不同电磁波入射下xoy平面的电场分布
Fig.6 Electric field distribution of xoy plane of unit structure under different incident electromagnetic waves
θ=60°时的线偏振电磁波入射,以及φ=90°和θ=60°时的圆偏振电磁波入射下的归一化电场分布。从
本文设计了一种基于悬链线结构的红外波段超构表面吸收器,该吸收器由金、氟化镁、硅介质层和金反射层共同构成。当线偏振电磁波以方位角φ=0°和入射角θ=60°入射时,该超构表面可在28.3 THz处吸收TE波并反射TM波;当圆偏振电磁波以方位角φ=90°和入射角θ=60°入射时,该超构表面可在28.3 THz处吸收LCP波并反射RCP波。这两种功能可在正交方位角下实现,且几乎没有干扰。通过调节单元结构的参数实现吸收峰值频率的移动,以及对LCP波和RCP波在不同频率上同时吸收。该器件在电磁波大角度入射时,仍能够保持良好的LD和CD。该研究在一定程度上丰富了悬链线电磁学的相关内容,对手性吸收、手性探测和手性成像等领域具有一定的研究价值。
参考文献
LUO Xiangang. Subwavelength electromagnetics[J]. Frontiers of Optoelectronics, 2016,9(2):138-150. doi:10.1007/s12200-016-0632-1. [百度学术]
LUO Xiangang. Metamaterials and metasurfaces[J]. Advanced Optical Materials, 2019,7(14):1900885. doi:10.1002/adom. 201900885. [百度学术]
LUO X G,TSAI D P,GU M,et al. Extraordinary optical fields in nanostructures:from sub-diffraction-limited optics to sensing and energy conversion[J]. Chemical Society Reviews, 2019,48(8):2458-2494. doi:10.1039/c8cs00864g. [百度学术]
YU N F,GENEVET P,AIETA F,et al. Flat optics:controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013,19(3):4700423. doi:10.1109/JSTQE.2013.2241399. [百度学术]
HUANG Yijia,XIAO Tianxiao,XIE Zhengwei,et al. Single-layered phase-change metasurfaces achieving efficient wavefront manipulation and reversible chiral transmission[J]. Optics Express, 2022,30(2):1337-1350. doi:10.1364/OE.447545. [百度学术]
HUANG Yijia,XIAO Tianxiao,XIE Zhengwei,et al. Single-layered reflective metasurface achieving simultaneous spin-selective perfect absorption and efficient wavefront manipulation[J]. Advanced Optical Materials, 2021,9(5):2001663. doi:10.1002/adom. 202001663. [百度学术]
HUANG Yijia,XIAO Tianxiao,CHEN Shuai,et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet[J]. Opto-Electronic Advances, 2023,6(7):220073. doi:10.29026/oea.2023.220073. [百度学术]
YUE Zhen,LI Jitao,LI Jie,et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electronic Science, 2022,1(3):210014. doi:10.29026/oes.2022.210014. [百度学术]
YANG Zhengmei,ZHOU Yanming,CHEN Yiqin,et al. Reflective color filters and monolithic color printing based on asymmetric Fabry-Perot cavities using nickel as a broadband absorber[J]. Advanced Optical Materials, 2016,4(8):1196-1202. doi:10.1002/adom.201600110. [百度学术]
MA Ju,HUANG Yijia,PU Mingbo,et al. Inverse design of broadband metasurface absorber based on convolutional autoencoder network and inverse design network[J]. Journal of Physics D:Applied Physics, 2020,53(46):464002. doi:10.1088/1361-6463/aba3ec. [百度学术]
YU P,BESTEIRO L V,HUANG Y J,et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 2019,7(3):1800995. doi:10.1002/adom.201800995. [百度学术]
YANG Yihao,JING Liqiao,ZHENG Bin,et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase[J]. Advanced Materials, 2016,28(32):6866-6871. doi:10.1002/adma.201600625. [百度学术]
HUANG Yijia,PU Mingbo,ZHANG Fei,et al. Broadband functional metasurfaces:achieving nonlinear phase generation toward achromatic surface cloaking and lensing[J]. Advanced Optical Materials, 2019,7(7):1801480. doi:10.1002/adom.201801480. [百度学术]
QIAN Chao,ZHENG Bin,SHEN Yichen,et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020,14(6):383-390. doi:10.1038/s41566-020-0604-2. [百度学术]
GAO Hui,FAN Xuhao,XIONG Wei,et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electronic Advances, 2021,4(11):210030. doi:10.29026/oea.2021.210030. [百度学术]
DENG Zilan,DENG Junhong,ZHUANG Xin,et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018,18(5): 2885-2892. doi:10.1021/acs.nanolett.8b00047. [百度学术]
ZHENG G X,MÜHLENBERND H,KENNEY M,et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015,10(4):308-312. doi:10.1038/nnano.2015.2. [百度学术]
ZHANG Xiaohao,PU Mingbo,GUO Yinghui,et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Advanced Functional Materials, 2019,29(22):1809145. doi:10.1002/adfm.201809145. [百度学术]
YAO Y,SHANKAR R,KATS M A,et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 2014,14(11):6526-6532. doi:10.1021/nl503104n. [百度学术]
PLUM E,ZHELUDEV N I. Chiral mirrors[J]. Applied Physics Letters, 2015,106(22):221901. doi:10.1063/1.4921969. [百度学术]
HUANG Hui,QIN Shuai,JIE Kaiqian,et al. Dynamic generation of giant linear and circular dichroism via phase-change metasurface[J]. Optics Express, 2021,29(25):40759-40769. doi:10.1364/OE.446028. [百度学术]
LUO Xiangang,PU Mingbo,GUO Yinghui,et al. Catenary functions meet electromagnetic waves:opportunities and promises[J]. Advanced Optical Materials, 2020,8(23):2001194. doi:10.1002/adom.202001194. [百度学术]
PU Mingbo,LI Xiong,MA Xiaoliang,et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015,1(9):e1500396. doi:10.1126/sciadv.1500396. [百度学术]
HUANG Yijia,LUO Jun,PU Mingbo,et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas[J]. Advanced Science, 2019,6(7):1801691. doi:10.1002/advs.201801691. [百度学术]
ZHANG Fei,PU Mingbo,LI Xiong,et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Advanced Materials, 2021,33(11):e2008157. doi:10.1002/adma.202008157. [百度学术]
GUO Yinghui,MA Xiaoliang,PU Mingbo,et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens[J]. Advanced Optical Materials, 2018,6(19):1800592. doi:10.1002/adom.201800592. [百度学术]
LI Xiong,PU Mingbo,WANG Yangqin,et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Materials, 2016,4(5):659-663. doi:10.1002/adom.201500713. [百度学术]
GUO Yinghui,HUANG Yijia,LI Xiong,et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Advanced Optical Materials, 2019,7(18):1900503. doi:10.1002/adom.201900503. [百度学术]
LUO Xiangang,PU Mingbo,LI Xiong,et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light:Science & Applications, 2017,6(6):e16276. doi:10.1038/lsa.2016.276. [百度学术]
PALIK E D. Handbook of optical constants of solids[M]. San Diego:Academic Press, 1998. [百度学术]
HUANG Yijia,XIE Xin,PU Mingbo,et al. Dual-functional metasurface toward giant linear and circular dichroism[J]. Advanced Optical Materials, 2020,8(11):1902061. [百度学术]
WANG Shuai,DENG Zilan,WANG Yujie,et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers[J]. Light:Science & Applications, 2021,10(1):24. doi:10.1038/s41377-021-00468-y. [百度学术]
ZOU H L,NASH G R. Efficient mid-infrared linear-to-circular polarization conversion using a nanorod-based metasurface[J]. Optical Materials Express, 2022,12(12):4565. doi:10.1364/ome.473926. [百度学术]
PLUM E,FEDOTOV V A,ZHELUDEV N I. Extrinsic electromagnetic chirality in metamaterials[J]. Journal of Optics A:Pure and Applied Optics, 2009,11(7):074009. doi:10.1088/1464-4258/11/7/074009. [百度学术]
PLUM E. Extrinsic chirality:tunable optically active reflectors and perfect absorbers[J]. Applied Physics Letters, 2016,108(24):241905. doi:10.1063/1.4954033. [百度学术]
JIANG Ruizhe,MA Qian,LIANG Jingcheng,et al. A single-layered wideband and wide-angle transparent metasurface for enhancing the EM-wave transmissions through glass[J]. IEEE Transactions on Antennas and Propagation, 2023,71(8):6593-6605. doi:10.1109/TAP.2023.3281879. [百度学术]
CAO Tun,WEI Chenwei,MAO Libang,et al. Extrinsic 2D chirality:giant circular conversion dichroism from a metal-dielectric-metal square array[J]. Scientific Reports, 2014(4):7442. doi:10.1038/srep07442. [百度学术]