摘要
随着6G网络的发展,深入研究城市环境中太赫兹信道的传播特性对于设计高效、可靠、安全的通信系统至关重要。本文通过理论分析、数值仿真和实验测量相结合的方法,系统地研究了不同类型建筑拐角(包括锐角、直角、钝角和弧形)对太赫兹信道传输及其物理层安全的影响。实验采用了太赫兹信道测量系统,在140 GHz、225 GHz和320 GHz三个频率下进行测量,并使用数值仿真和刀口衍射模型进行理论分析。研究结果揭示了拐角结构对太赫兹波传播的影响,包括衍射和反射现象,以及频率变化对这些现象的影响。该项工作为太赫兹通信系统在城市环境中的部署提供了理论指导。
随着无线通信技术的快速发展,对第六代(6G)移动通信网络的研究已成为学术界和工业界的热
近年来,关于太赫兹信道建模的研究取得了一系列进展。德国布伦瑞克工业大学Priebe
太赫兹通信中衍射效应的重要性已得到广泛认可。在300 GHz频段进行的实验测量揭示了太赫兹波在简单障碍物周围的衍射现
鉴于现有研究的局限性,本文旨在系统性地研究不同类型建筑拐角对太赫兹信道传输及其物理层安全的影响,重点关注拐角的几何特性(如锐角、直角、钝角和弧形)以及不同频率(140 GHz、225 GHz和320 GHz)下的传播行为。通过结合理论分析、数值仿真和实验测量,为太赫兹通信系统在城市环境中的部署提供全面的指导。
实验采用未调制的太赫兹信道测量系统,用于高精确度测量太赫兹信道在建筑物拐角及各种障碍物周围的传播特性。测量系统的发射端由Ceyear 1465D信号发生器(发射功率0 dBm)、Ceyear 82406B倍频模块(倍增系数×12)以及HD‒1400SGAH25喇叭天线组成,这些组件依次连接,如

图1 实验设置
Fig.1 Experimental setup
为深入研究不同类型的拐角对太赫兹信道的影响,本文采用表面光滑的铝板制作了一系列拐角模
对实验场景进行数值仿真,并将仿真的信道场景设定为如
首先聚焦于140 GHz的太赫兹信道在城市环境中常见的90°拐角场景下的传播特性。这个频率代表了未来6G通信系统可能使用的频段之

图2 90°拐角在不同旋转角度下的结果对比
Fig.2 Comparison for a 90° corner with varying rotation angles
此外,从
为验证仿真结果的准确性,使用
为更加全面理解拐角的几何形态对太赫兹信道传播的影响,将研究范围扩展到一系列具有代表性的角度。通过仿真实验模拟了太赫兹波在60°、90°、120°以及弧形拐角处的传播情况,结果如

图3 140 GHz工作频率下不同拐角类型的仿真结果
Fig.3 Simulation results for different corner types at 140 GHz operating frequency
从
增大拐角角度所带来的旁瓣功率增加对城市环境下太赫兹通信系统的设计具有多重意义:一方面,正如文献[
进一步探讨拐角对不同频率的信道传播的影响。

图4 频率相关的仿真和实验结果
Fig.4 Frequency-dependent simulation and experimental results
频率变化对信号的安全性也会产生重要影响。较低频率的信号由于衍射效应更强,可能会增加信息泄露的风险,尤其是在城市环境中存在大量反射和散射表面的情况下。相比之下,高频信号虽在传播损耗方面面临更大挑战,但其较弱的衍射特性可有助于减少未授权接收(非法窃听)的可能性,从而增强了通信系统的物理层安全性。
已有多种理论模型用于预测衍射信道的传播特性,主要的模型包括射线追踪
刀口衍射模型能够预测由尖锐边缘障碍物引起的信号衰减,可用于评估复杂城市场景中太赫兹波传播情况。刀口衍射模型核心为菲涅耳积分,描述了半无限平面引起的衍射图样。刀口衍射引起的主要衰减因子表达式为:
(1) |
式中为复菲涅耳积分,定义为:
(2) |
式中为菲涅耳‒基尔霍夫衍射参数:
(3) |
式中:为障碍物在视距路径上方的高度;和分别为Tx到障碍物和障碍物到Rx的距离;为THz信号的波长。

图5 刀口衍射模型结果
Fig.5 Results of knife-edge diffraction model
尽管刀口衍射模型在拐角附近提供了很好的一阶近似太赫兹信道行为,但存在局限性。正如前文中所讨论的,该模型未考虑反射或散射效应,但这些效应在现实世界中的城市环境中非常重要。根据文献[
随着太赫兹通信技术的不断发展和可能到来的大规模部署,物理层安全成为一个日益重要的研究课题。基于
假设发射端(Alice)仅发射信号,而不具备检测信道状态信息的能
(4) |
式中:、分别为Bob和Eve的信噪比。该参数综合考虑了Bob和Eve的接收能力,将它们的绝对功率水平与特定的调制和编码方法联系起来。cs的取值范围为1(Eve无法窃听)~0(Eve和Bob接收到相同信号),甚至可能为负值(Eve接收到的信号比Bob更强)。Eve成功解码信号的能力不仅取决于信号强度,还与调制方案、绝对功率水平以及Eve的接收器性能等因素相关。从信息论的角度看,即使在cs<0的情况下,在某些条件下仍可能实现安全传
基于

图6 不同工作频率下90°拐角不同旋转角度的保密性能分析
Fig.6 Secrecy performance analysis for a 90° corner with different rotation angles at different frequencies

图7 在不同工作频率下不同调制方案的预测BER性能
Fig.7 Predicted BER performance under various modulation schemes at different frequencies
2种调制方案在太赫兹信道下的BER为:
(5) |
(6) |
式中:Q为高斯随机变量超过特定值的概率;M为调制阶数。
从
本文针对6G通信网络中无人机辅助太赫兹通信系统在城市环境下的传播特性展开研究,特别关注了建筑物拐角对信道传播和物理层安全的影响。采用了理论分析、数值仿真和实验测量相结合的方法,使用了包括Ceyear 1465D信号发生器、倍频模块和喇叭天线在内的高精确度测量系统,在140 GHz、225 GHz和320 GHz频段进行了实验。研究发现,拐角的几何特性对太赫兹波的传播有显著影响:拐角会导致明显的衍射和反射现象;随着拐角角度增大,旁瓣功率相应增加;频率升高导致衍射效应减弱;特别是,拐角结构的旋转对阴影区域的信道特性影响不大,证实了刀口衍射模型的适用性,但刀口衍射模型在预测复杂反射和散射现象方面存在局限性,这凸显了开发更全面模型的必要性;在物理层安全方面,拐角引起的反射会增加信号泄露风险,而弧形拐角带来的窃听威胁低很多。
该项研究通过揭示建筑物拐角对信道特性的影响,为优化太赫兹通信网络的覆盖范围和性能提供了依据。同时,对物理层安全特性的分析为设计更安全的太赫兹通信系统提供了新的思路。本研究也揭示了现有理论模型在描述复杂城市环境中太赫兹波传播行为时的局限性,为未来研究指明了方向。
参考文献
石涵琛,杨闯,彭木根. 6G太赫兹通信: 架构、技术与挑战[J]. 电波科学学报, 2024,39(3):395-412. [百度学术]
SHI Hanchen,YANG Chuang,PENG Mugen. Terahertz communication for 6G:architectures,technologies and challenges[J]. Chinese Journal of Radio Science, 2024,39(3):395-412. doi:10.12265/j.cjors.2023130. [百度学术]
MAHDI AZARI M,SOLANKI S,CHATZINOTAS S,et al. THz-empowered UAVs in 6G:opportunities,challenges,and trade-offs[J]. IEEE Communications Magazine, 2022,60(5):24-30. doi:10.1109/MCOM.001.2100889. [百度学术]
谢莎,李浩然,李玲香,等. 太赫兹通信技术综述[J]. 通信学报, 2020,41(5):168-186. [百度学术]
XIE Sha,LI Haoran,LI Lingxiang,et al. Survey of terahertz communication technology[J]. Journal on Communications, 2020,41(5):168-186. doi:10.11959/j.issn.1000-436x.2020107. [百度学术]
YI Haofan,GUAN Ke,HE Danping,et al. Characterization for the vehicle-to-infrastructure channel in urban and highway scenarios at the terahertz band[J]. IEEE Access, 2019(7):166984-166996. doi:10.1109/ACCESS.2019.2953890. [百度学术]
吴振东,马建军,张玉萍,等. 太赫兹通信物理层安全技术发展研究[J]. 太赫兹科学与电子信息学报, 2023,21(3):301-310. [百度学术]
WU Zhendong,MA Jianjun,ZHANG Yuping,et al. Development of physical layer security communication in terahertz band[J]. Journal of Terahertz Science and Electronic Information Technology, 2023,21(3):301-310. doi:10.11805/TKYDA2022052. [百度学术]
MA J J,SHRESTHA R,MITTLEMAN L. Invited article: channel performance for indoor and outdoor terahertz wireless links[J]. APL Photonics, 2018,3(5):051601. doi:10.1063/1.5014037. [百度学术]
刘斯琦,林长星,刘娟,等. 太赫兹近场通信信道特性研究综述[J]. 太赫兹科学与电子信息学报, 2024,22(6):647-657. [百度学术]
LIU Siqi,LIN Changxing,LIU Juan,et al. A review on the characteristics of terahertz near field communication channels[J]. Journal of Terahertz Science and Electronic Information Technology, 2024,22(6):647-657. doi:10.11805/TKYDA2024110. [百度学术]
PRIEBE S,JASTROW C,JACOB M,et al. Channel and propagation measurements at 300 GHz[J]. IEEE Transactions on Antennas and Propagation, 2011,59(5):1688-1698. doi:10.1109/TAP.2011.2122294. [百度学术]
LI Da,LIU Wenbo,WEI Menghan,et al. Experimental and theoretical exploration of terahertz channel performance through glass doors[J]. Nano Communication Networks, 2024(39):100496. doi:10.1016/j.nancom.2024.100496. [百度学术]
TALEB F,HERNANDEZ-CARDOSO G G,CASTRO-CAMUS E,et al. Transmission,reflection, and scattering characterization of building materials for indoor THz communications[J]. IEEE Transactions on Terahertz Science and Technology, 2023,13(5): 421-430. doi:10.1109/TTHZ.2023.3281773. [百度学术]
KHAWAJA W,GUVENC D,MATOLAK D W,et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles[J]. IEEE Communications Surveys & Tutorials, 2019,21(3):2361-2391. doi:10.1109/COMST.2019.2915069. [百度学术]
ZENG Y,ZHANG R,LIM T J,et al. Wireless communications with unmanned aerial vehicles:opportunities and challenges[J]. IEEE Communications Magazine, 2016,54(5):36-42. doi:10.1109/MCOM.2016.7470933. [百度学术]
LI Da,LI Pei′an,ZHAO Jiabiao,et al. Ground-to-UAV sub-terahertz channel measurement and modeling[J]. Optics Express, 2024,32(18):32482-32494. doi:10.1364/OE.534369. [百度学术]
JACOB M,PRIEBE R,DICKHOFF R,et al. Diffraction in mm and sub-mm wave indoor propagation channels[J]. IEEE Transactions on Microwave Theory and Techniques, 2012,60(3):833-844. doi:10.1109/TMTT.2011.2178859. [百度学术]
KOKKONIEMI J,RINTANEN P,LEHTOMAKI J,et al. Diffraction effects in terahertz band-measurements and analysis[C]// IEEE Global Communications Conference(GLOBECOM). Washington,DC,USA:IEEE, 2016:1-6. doi:10.1109/GLOCOM.2016. 7841734. [百度学术]
MA J,SHRESTHA R,ADELBERG J,et al. Security and eavesdropping in terahertz wireless links[J]. Nature, 2018(563):89-93. doi:10.1038/s41586-018-0609-x. [百度学术]
XING Y C,RAPPAPORT T S. Propagation measurement system and approach at 140 GHz―moving to 6G and above 100 GHz[C]// 2018 IEEE Global Communications Conference(GLOBECOM). Abu Dhabi,UAE:IEEE, 2018:1-6. doi:10.1109/GLOCOM.2018. 8647921. [百度学术]
HAN C,BICEN A O,AKYILDIZ I F. Multi-ray channel modeling and wideband characterization for wireless communi- cations in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2015,14(5):2402-2412. doi:10.1109/TWC. 2014.2386335. [百度学术]
JU S H,ALI S S H,JAVED M A,et al. Scattering mechanisms and modeling for terahertz wireless communications[C]// 2019 IEEE International Conference on Communications(ICC). Shanghai,China:IEEE, 2019:1-7. doi:10.1109/ICC.2019.8761205. [百度学术]
WU Y,KOKKONIEMI J, HAN C,et al. Interference and coverage analysis for terahertz networks with indoor blockage effects and line-of-sight access point association[J]. IEEE Transactions on Wireless Communications, 2020,20(3):1472-1486. doi:10.1109/TWC.2020.3033825. [百度学术]
PRIEBE S,JACOB M,KÜRNER T. The impact of antenna directivities on THz indoor channel characteristics[C]// 2012 the 6th European Conference on Antennas and Propagation(EUCAP). Prague,Czech Republic:IEEE, 2012:478-482. doi:10.1109/EuCAP.2012.6205849. [百度学术]
MOLDOVAN A,RUDER M A,AKYILDIZ I,et al. LOS and NLOS channel modeling for terahertz wireless communication with scattered rays[C]// IEEE Globecom Workshops. Austin,TX,USA:IEEE, 2014:388-392. doi:10.1109/GLOCOMW.2014.7063462. [百度学术]
PETROV V,MOLTCHANOV D,KOUCHERYAVY Y,et al. Interference and SINR in dense terahertz networks[C]// Presented at the IEEE 82nd Vehicular Technology Conference. Boston,MA,USA:IEEE, 2015:1-5. doi:10.1109/VTCFall.2015.7390991. [百度学术]
RAPPAPORT T S,SUN S,MAYZUS R,et al. Millimeter wave mobile communications for 5G cellular:it will work![J]. IEEE Access, 2013(1):335-349. doi:10.1109/ACCESS.2013.2260813. [百度学术]
KÜRNER T S,PRIEBE S. Towards THz communications-status in research, standardization and regulation[J]. Journal of Infrared,Millimeter and Terahertz Waves, 2014(35):53-62. doi:10.1007/s10762-013-0014-3. [百度学术]
TEKBIYIK K,EKTI RIZA A. Terahertz band communication systems:challenges,novelties and standardization efforts[J]. Physical Communication, 2019,35(7):2-27. doi:10.1016/j.phycom.2019.04.014. [百度学术]
CUI Jiayuan,LI Da,ZHAO Jiabiao. Terahertz channel modeling based on surface sensing characteristics[J]. Nano Communication Networks, 2024(42):100533. doi:10.1016/j.nancom.2024.100533. [百度学术]
RAPPAPORT T S. Wireless communication and applications above 100 GHz:opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019(7):78729-78757. doi:10.1109/ACCESS.2019.2921522. [百度学术]
HANEDA K,JÄRVELÄINEN J,KARTTUNEN A,et al. A statistical spatio-temporal radio channel model for large indoor environments at 60 and 70 GHz[J]. IEEE Transactions on Antennas and Propagation, 2015,63(6):2694-2704. doi:10.1109/TAP.2015.2412147. [百度学术]
WU Y P,KHISTI A,XIAO C S. A survey of physical layer security techniques for 5G wireless networks and challenges ahead[J]. IEEE Journal on Selected Areas in Communications, 2018,36(4):679-695. doi:10.1109/JSAC.2018.2825560. [百度学术]
CSISZÁR I,KORNER J. Broadcast channels with confidential messages[J]. IEEE Transactions on Information Theory, 1978,24(3):339-348. doi:10.1109/TIT.1978.1055892. [百度学术]
JU Ying,WANG Huiming,ZHENG Tongxing,et al. Safeguarding millimeter wave communications against randomly located eavesdroppers[J]. IEEE Transactions on Wireless Communication, 2018,17(4):2675-2689. doi:10.1109/TWC.2018.2800747. [百度学术]
LI Pei′an,WANG Jianchen,ZHAO Liangbin,et al. Scattering and eavesdropping in terahertz wireless link by wavy surfaces[J]. IEEE Transactions on Antennas and Propagation, 2023,71(4):3590-3597. doi:10.1109/TAP.2023.3241333. [百度学术]
WU Qingqing,ZHANG Rui. Towards smart and reconfigurable environment:intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2019,58(1):106-112. doi:10.1109/MCOM.001.1900107. [百度学术]
LIU Guohao,HE Xiangkun,ZHAO Jiabiao,et al. Impact of snowfall on terahertz channel performance: measurement and modeling insights[J]. IEEE Transactions on Terahertz Science and Technology, 2024,14(5):691-698. doi:10.1109/TTHZ.2024. 3417319. [百度学术]
FURQAN H M,HAMAMREH J M,ARSLAN H. Enhancing physical layer security of OFDM systems using channel shortening[C]// 2017 IEEE the 28th Annual International Symposium on Personal,Indoor, and Mobile Radio Communications(PIMRC). Montreal,QC,Canada:IEEE, 2017:1-5. doi:10.1109/PIMRC.2017.8292335. [百度学术]
WANG Qian,CHEN Zhi,MEI Weidong,et al. Improving physical layer security using UAV-enabled mobile relaying[J]. IEEE Wireless Communications Letters, 2017,6(3):310-313. doi:10.1109/LWC.2017.2680449. [百度学术]
卢汉成,王亚正,赵丹,等. 智能反射表面辅助的无线通信系统的物理层安全综述[J]. 通信学报, 2022,43(2):171-184. [百度学术]
LU Hancheng,WANG Yazheng,ZHAO Dan,et al. Survey of physical layer security of intelligent reflecting surface-assisted wireless communication systems[J]. Journal on Communications, 2022,43(2):171-184. doi:10.11959/j.issn.1000-436x.2022025. [百度学术]